11,304 research outputs found

    Lamb Shift of 3P and 4P states and the determination of α\alpha

    Get PDF
    The fine structure interval of P states in hydrogenlike systems can be determined theoretically with high precision, because the energy levels of P states are only slightly influenced by the structure of the nucleus. Therefore a measurement of the fine structure may serve as an excellent test of QED in bound systems or alternatively as a means of determining the fine structure constant α\alpha with very high precision. In this paper an improved analytic calculation of higher-order binding corrections to the one-loop self energy of 3P and 4P states in hydrogen-like systems with low nuclear charge number ZZ is presented. A comparison of the analytic results to the extrapolated numerical data for high ZZ ions serves as an independent test of the analytic evaluation. New theoretical values for the Lamb shift of the P states and for the fine structure splittings are given.Comment: 33 pages, LaTeX, 4 tables, 4 figure

    QED self-energy contribution to highly-excited atomic states

    Get PDF
    We present numerical values for the self-energy shifts predicted by QED (Quantum Electrodynamics) for hydrogenlike ions (nuclear charge 60≤Z≤11060 \le Z \le 110) with an electron in an n=3n=3, 4 or 5 level with high angular momentum (5/2≤j≤9/25/2\le j \le 9/2). Applications include predictions of precision transition energies and studies of the outer-shell structure of atoms and ions.Comment: 20 pages, 5 figure

    Coordinate-space approach to the bound-electron self-energy: Self-Energy screening calculation

    Get PDF
    The self-energy screening correction is evaluated in a model in which the effect of the screening electron is represented as a first-order perturbation of the self energy by an effective potential. The effective potential is the Coulomb potential of the spherically averaged charge density of the screening electron. We evaluate the energy shift due to a 1s1/21s_{1/2}, 2s1/22s_{1/2}, 2p1/22p_{1/2}, or 2p3/22p_{3/2} electron screening a 1s1/21s_{1/2}, 2s1/22s_{1/2}, 2p1/22p_{1/2}, or 2p3/22p_{3/2} electron, for nuclear charge Z in the range 5≤Z≤925 \le Z\le 92. A detailed comparison with other calculations is made.Comment: 54 pages, 10 figures, 4 table

    Erprobung und Bewertung eines neuen Geräts zur Unterstockpflege (SIEGWALD HS 1200) im ökologischen Weinbau

    Get PDF
    A new system for under-vine cultivation (SIEGWALD HS 1200) was tested over a period of two years in four farms with organic viticulture and compared with their customary systems. The SIEGWALD system has well proved its worth. The total costs were comparable to those of other systems. All tractors met the requirements of the SIEGWALD system. Vine trunks were not injured, except in one vineyard. Negative consequences for the fauna on the soil surface and for predatory mites (Typhlodromus pyri) in the canopy were not found

    Calculation of the Electron Self Energy for Low Nuclear Charge

    Get PDF
    We present a nonperturbative numerical evaluation of the one-photon electron self energy for hydrogenlike ions with low nuclear charge numbers Z=1 to 5. Our calculation for the 1S state has a numerical uncertainty of 0.8 Hz for hydrogen and 13 Hz for singly-ionized helium. Resummation and convergence acceleration techniques that reduce the computer time by about three orders of magnitude were employed in the calculation. The numerical results are compared to results based on known terms in the expansion of the self energy in powers of (Z alpha).Comment: 10 pages, RevTeX, 2 figure

    Higher-order binding corrections to the Lamb shift of 2P states

    Get PDF
    We present an improved calculation of higher-order corrections to the one-loop self energy of 2P states in hydrogen-like systems with small nuclear charge Z. The method is based on a division of the integration with respect to the photon energy into a high- and a low-energy part. The high-energy part is calculated by an expansion of the electron propagator in powers of the Coulomb field. The low-energy part is simplified by the application of a Foldy-Wouthuysen transformation. This transformation leads to a clear separation of the leading contribution from the relativistic corrections and removes higher order terms. The method is applied to the 2P_{1/2} and 2P_{3/2} states in atomic hydrogen. The results lead to new theoretical values for the Lamb shifts and the fine structure splitting.Comment: 18 pages, LaTeX. In comparison to the journal version, it contains an added note (2000) which reflects the current status of Lamb shift calculation

    First-principles calculations of the vibrational properties of bulk CdSe and CdSe nanowires

    Full text link
    We present first-principles calculations on bulk CdSe and CdSe nanowires with diameters of up to 22 \AA. Density functional linear combination of atomic orbitals and plane wave calculations of the electronic and structural properties are presented and discussed. We use an iterative, symmetry-based method to relax the structures into the ground state. We find that the band gap depends on surface termination. Vibrational properties in the whole Brillouin zone of bulk CdSe and the zone-center vibrations of nanowires are calculated and analyzed. We find strongly size-dependent and nearly constant modes, depending on the displacement directions. A comparison with available experimental Raman data is be given

    Electron Self Energy for Higher Excited S Levels

    Get PDF
    A nonperturbative numerical evaluation of the one-photon electron self energy for the 3S and 4S states with charge numbers Z=1 to 5 is described. The numerical results are in agreement with known terms in the expansion of the self energy in powers of Zalpha.Comment: 3 pages, RevTeX, to appear in Phys. Rev.
    • …
    corecore