1,993 research outputs found
Charge injection instability in perfect insulators
We show that in a macroscopic perfect insulator, charge injection at a
field-enhancing defect is associated with an instability of the insulating
state or with bistability of the insulating and the charged state. The effect
of a nonlinear carrier mobility is emphasized. The formation of the charged
state is governed by two different processes with clearly separated time
scales. First, due to a fast growth of a charge-injection mode, a localized
charge cloud forms near the injecting defect (or contact). Charge injection
stops when the field enhancement is screened below criticality. Secondly, the
charge slowly redistributes in the bulk. The linear instability mechanism and
the final charged steady state are discussed for a simple model and for
cylindrical and spherical geometries. The theory explains an experimentally
observed increase of the critical electric field with decreasing size of the
injecting contact. Numerical results are presented for dc and ac biased
insulators.Comment: Revtex, 7pages, 4 ps figure
An improved continuous compositional-spread technique based on pulsed-laser deposition and applicable to large substrate areas
A new method for continuous compositional-spread (CCS) thin-film fabrication
based on pulsed-laser deposition (PLD) is introduced. This approach is based on
a translation of the substrate heater and the synchronized firing of the
excimer laser, with the deposition occurring through a slit-shaped aperture.
Alloying is achieved during film growth (possible at elevated temperature) by
the repeated sequential deposition of sub-monolayer amounts. Our approach
overcomes serious shortcomings in previous in-situ implementations of CCS based
on sputtering or PLD, in particular the variations of thickness across the
compositional spread and the differing deposition energetics as function of
position. While moving-shutter techniques are appropriate for PLD-approaches
yielding complete spreads on small substrates (i.e. small as compared to
distances over which the deposition parameters in PLD vary, typically about 1
cm), our method can be used to fabricate samples that are large enough for
individual compositions to be analyzed by conventional techniques, including
temperature-dependent measurements of resistivity and dielectric and magnetic
and properties (i.e. SQUID magnetometry). Initial results are shown for spreads
of (Sr,Ca)RuO.Comment: 6 pages, 8 figures, accepted for publication in Rev. Sci. Instru
Infrared anomalous Hall effect in SrRuO: Evidence for crossover to intrinsic behavior
The origin of the Hall effect in many itinerant ferromagnets is still not
resolved, with an anomalous contribution from the sample magnetization that can
exhibit extrinsic or intrinsic behavior. We report the first mid-infared (MIR)
measurements of the complex Hall (), Faraday (), and Kerr
() angles, as well as the Hall conductivity () in a
SrRuO film in the 115-1400 meV energy range. The magnetic field,
temperature, and frequency dependence of the Hall effect is explored. The MIR
magneto-optical response shows very strong frequency dependence, including sign
changes. Below 200 meV, the MIR changes sign between 120 and 150
K, as is observed in dc Hall measurements. Above 200 meV, the temperature
dependence of is similar to that of the dc magnetization and the
measurements are in good agreement with predictions from a band calculation for
the intrinsic anomalous Hall effect (AHE). The temperature and frequency
dependence of the measured Hall effect suggests that whereas the behavior above
200 meV is consistent with an intrinsic AHE, the extrinsic AHE plays an
important role in the lower energy response.Comment: The resolution of figures is improve
New supersymmetric quartet of nuclei in the A=190 mass region
We present evidence for a new supersymmetric quartet in the A=190 region of
the nuclear mass table. New experimental information on transfer and neutron
capture reactions to the odd-odd nucleaus 194 Ir strongly suggests the
existence of a new supersymmetric quartet, consisting of the 192,193 Os and
193,194 Ir nuclei. We make explicit predictions for the odd-neutron nucleus 193
Os, and suggest that its spectroscopic properties be measured in dedicated
experiments.Comment: 5 pages, 4 figures, updated figures and revised text, Physical Review
C, Rapid Communication, in pres
Suppressed dependence of polarization on epitaxial strain in highly polar ferroelectrics
A combined experimental and computational investigation of coupling between
polarization and epitaxial strain in highly polar ferroelectric
PbZr_0.2Ti_0.8O_3 (PZT) thin films is reported. A comparison of the properties
of relaxed (tetragonality c/a = 1.05) and highly-strained (c/a = 1.09)
epitaxial films shows that polarization, while being amongst the highest
reported for PZT or PbTiO_3 in either film or bulk forms (P_r = 82
microC/cm^2), is almost independent of the epitaxial strain. We attribute this
behavior to a suppressed sensitivity of the A-site cations to epitaxial strain
in these Pb-based perovskites, where the ferroelectric displacements are
already large, contrary to the case of less polar perovskites, such as BaTiO_3.
In the latter case, the A-site cation (Ba) and equatorial oxygen displacements
can lead to substantial polarization increases.Comment: 4 pages, 3 figure
Superconducting MgB(2) films via precursor post-processing approach
Superconducting MgB(2) films with Tc = 38.6 K were prepared using a
precursor-deposition, ex-situ post-processing approach. Precursor films of
boron, ~0.5 micrometer thick, were deposited onto Al(2)O(3) (102) substrates by
e-beam evaporation; a post-anneal at 890 deg C in the presence of bulk MgB(2)
and Mg metal produced highly crystalline MgB(2) films. X-ray diffraction
indicated that the films exhibit some degree of c-axis alignment, but are
randomly oriented in-plane. Transport current measurements of the
superconducting properties show high values of the critical current density and
yield an irreversibility line that exceeds that determined by magnetic
measurements on bulk polycrystalline materials.Comment: PDF file with 10 pages total, including 4 figure
Crossovers in the thermal decay of metastable states in discrete systems
The thermal decay of linear chains from a metastable state is investigated. A
crossover from rigid to elastic decay occurs when the number of particles, the
single particle energy barrier or the coupling strength between the particles
is varied. In the rigid regime, the single particle energy barrier is small
compared to the coupling strength and the decay occurs via a uniform
saddlepoint solution, with all degrees of freedom decaying instantly.
Increasing the barrier one enters the elastic regime, where the decay is due to
bent saddlepoint configurations using the elasticity of the chain to lower
their activation energy. Close to the rigid-to-elastic crossover, nucleation
occurs at the boundaries of the system. However, in large systems, a second
crossover from boundary to bulk nucleation can be found within the elastic
regime, when the single particle energy barrier is further increased. We
compute the decay rate in the rigid and in the elastic regimes within the
Gaussian approximation. Around the rigid-to-elastic crossover, the calculations
are performed beyond the steepest descent approximation. In this region, the
prefactor exhibits a scaling property. The theoretical results are discussed in
the context of discrete Josephson transmission lines and pancake vortex stacks
that are pinned by columnar defects.Comment: 13 pages, RevTeX, 7 PS-figure
- …