15,647 research outputs found

    Statistical model of the powder flow regulation by nanomaterials

    Full text link
    Fine powders often tend to agglomerate due to van der Waals forces between the particles. These forces can be reduced significantly by covering the particles with nanoscaled adsorbates, as shown by recent experiments. In the present work a quantitative statistical analysis of the effect of powder flow regulating nanomaterials on the adhesive forces in powders is given. Covering two spherical powder particles randomly with nanoadsorbates we compute the decrease of the mutual van der Waals force. The dependence of the force on the relative surface coverage obeys a scaling form which is independent of the used materials. The predictions by our simulations are compared to the experimental results.Comment: 18 pages, 9 figures, 1 table, LaTeX; reviewed version with minor changes, published (Powder Technology

    Conversion efficiency and luminosity for gamma-proton colliders based on the LHC-CLIC or LHC-ILC QCD Explorer scheme

    Get PDF
    Gamma-proton collisions allow unprecedented investigations of the low x and high Q2Q^{2} regions in quantum chromodynamics. In this paper, we investigate the luminosity for "ILC"Ă—\timesLHC (sep=1.3\sqrt{s_{ep}}=1.3 TeV) and "CLIC"Ă—\timesLHC (sep=1.45\sqrt{s_{ep}}=1.45 TeV) based Îłp\gamma p colliders. Also we determine the laser properties required for high conversion efficiency.Comment: 16, 6 figure

    Microelectromagnets for Trapping and Manipulating Ultracold Atomic Quantum Gases

    Full text link
    We describe the production and characterization of microelectromagnets made for trapping and manipulating atomic ensembles. The devices consist of 7 fabricated parallel copper conductors 3 micrometer thick, 25mm long, with widths ranging from 3 to 30 micrometer, and are produced by electroplating a sapphire substrate. Maximum current densities in the wires up to 6.5 * 10^6 A / cm^2 are achieved in continuous mode operation. The device operates successfully at a base pressure of 10^-11 mbar. The microstructures permit the realization of a variety of magnetic field configurations, and hence provide enormous flexibility for controlling the motion and the shape of Bose-Einstein condensates.Comment: 4 pages, 3 figure

    Omniview motionless camera orientation system

    Get PDF
    A device for omnidirectional image viewing providing pan-and-tilt orientation, rotation, and magnification within a hemispherical field-of-view that utilizes no moving parts. The imaging device is based on the effect that the image from a fisheye lens, which produces a circular image of at entire hemispherical field-of-view, which can be mathematically corrected using high speed electronic circuitry. More specifically, an incoming fisheye image from any image acquisition source is captured in memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. As a result, this device can accomplish the functions of pan, tilt, rotation, and zoom throughout a hemispherical field-of-view without the need for any mechanical mechanisms. The preferred embodiment of the image transformation device can provide corrected images at real-time rates, compatible with standard video equipment. The device can be used for any application where a conventional pan-and-tilt or orientation mechanism might be considered including inspection, monitoring, surveillance, and target acquisition

    Fourier transform pure nuclear quadrupole resonance by pulsed field cycling

    Get PDF
    We report the observation of Fourier transform pure NQR by pulsed field cycling. For deuterium, well resolved spectra are obtained with high sensitivity showing the low frequency nu0 lines and allowing assignments of quadrupole couplings and asymmetry parameters to inequivalent deuterons. The technique is ideally applicable to nuclei with low quadrupolar frequencies (e.g., 2D, 7Li, 11B, 27Al, 23Na, 14N) and makes possible high resolution structure determination in polycrystalline or disordered materials

    Cold atoms near superconductors: Atomic spin coherence beyond the Johnson noise limit

    Full text link
    We report on the measurement of atomic spin coherence near the surface of a superconducting niobium wire. As compared to normal conducting metal surfaces, the atomic spin coherence is maintained for time periods beyond the Johnson noise limit. The result provides experimental evidence that magnetic near field noise near the superconductor is strongly suppressed. Such long atomic spin coherence times near superconductors open the way towards the development of coherently coupled cold atom / solid state hybrid quantum systems with potential applications in quantum information processing and precision force sensing.Comment: Major revisions of the text for submission to New Journal of Physics 8 pages, 4 figure

    Direct Measurement of intermediate-range Casimir-Polder potentials

    Full text link
    We present the first direct measurements of Casimir-Polder forces between solid surfaces and atomic gases in the transition regime between the electrostatic short-distance and the retarded long-distance limit. The experimental method is based on ultracold ground-state Rb atoms that are reflected from evanescent wave barriers at the surface of a dielectric glass prism. Our novel approach does not require assumptions about the potential shape. The experimental data confirm the theoretical prediction in the transition regime.Comment: 4 pages, 3 figure

    Stripe-hexagon competition in forced pattern forming systems with broken up-down symmetry

    Full text link
    We investigate the response of two-dimensional pattern forming systems with a broken up-down symmetry, such as chemical reactions, to spatially resonant forcing and propose related experiments. The nonlinear behavior immediately above threshold is analyzed in terms of amplitude equations suggested for a 1:21:2 and 1:11:1 ratio between the wavelength of the spatial periodic forcing and the wavelength of the pattern of the respective system. Both sets of coupled amplitude equations are derived by a perturbative method from the Lengyel-Epstein model describing a chemical reaction showing Turing patterns, which gives us the opportunity to relate the generic response scenarios to a specific pattern forming system. The nonlinear competition between stripe patterns and distorted hexagons is explored and their range of existence, stability and coexistence is determined. Whereas without modulations hexagonal patterns are always preferred near onset of pattern formation, single mode solutions (stripes) are favored close to threshold for modulation amplitudes beyond some critical value. Hence distorted hexagons only occur in a finite range of the control parameter and their interval of existence shrinks to zero with increasing values of the modulation amplitude. Furthermore depending on the modulation amplitude the transition between stripes and distorted hexagons is either sub- or supercritical.Comment: 10 pages, 12 figures, submitted to Physical Review
    • …
    corecore