52,563 research outputs found
Baryon states with open beauty in the extended local hidden gauge approach
In this paper we examine the interaction of \bar B N, \bar B \Delta, \bar B^*
N and \bar B^* \Delta states, together with their coupled channels, using a
mapping from the light meson sector. The assumption that the heavy quarks act
as spectators at the quark level automatically leads us to the results of the
heavy quark spin symmetry for pion exchange and reproduces the results of the
Weinberg Tomozawa term, coming from light vector exchanges in the extended
local hidden gauge approach. With this dynamics we look for states dynamically
generated from the interaction and find two states with nearly zero width,
which we associate to the \Lambda_b(5912) and \Lambda_b(5920) states. The
states couple mostly to \bar B^* N, which are degenerate with the Weinberg
Tomozawa interaction. The difference of masses between these two states, with
J=1/2, 3/2 respectively, is due to pion exchange connecting these states to
intermediate \bar B N states. In addition to these two \Lambda_b states, we
find three more states with I=0, one of them nearly degenerate in two states of
J=1/2,3/2. Furthermore we also find eight more states in , two of them
degenerate in J=1/2, 3/2, and other two degenerate in J=1/2, 3/2, 5/2.Comment: 26 pages, 9 figures, 24 table
Orbital elements of barium stars formed through a wind accretion scenario
Taking the total angular momentum conservation in place of the tangential
momentum conservation, and considering the square and higher power terms of
orbital eccentricity e, the changes of orbital elements of binaries are
calculated for wind accretion scenario. These new equations are used to
quantitatively explain the observed (e,logP) properties of normal G, K giants
and barium stars. Our results reflect the evolution from G, K giant binaries to
barium binaries, moreover, the barium stars with longer orbital periods P>1600
days may be formed by accreting part of the ejecta from the intrinsic AGB stars
through wind accretion scenario.Comment: 7 pages, LaTex, 4 PS figures and 1 table included, accepted for
publication in A &
Baryon states with open charm in the extended local hidden gauge approach
In this paper we examine the interaction of and states,
together with their coupled channels, by using an extension of the local hidden
gauge formalism from the light meson sector, which is based on heavy quark spin
symmetry. The scheme is based on the use of the impulse approximation at the
quark level, with the heavy quarks acting as spectators, which occurs for the
dominant terms where there is the exchange of a light meson. The pion exchange
and the Weinberg-Tomozawa interactions are generalized and with this dynamics
we look for states generated from the interaction, with a unitary coupled
channels approach that mixes the pseudoscalar-baryon and vector-baryon states.
We find two states with nearly zero width which are associated to the
and . The lower state, with ,
couples to and , and the second one, with , to . In addition to these two states, we find four more states with
, one of them nearly degenerate in two states of .
Furthermore we find three states in , two of them degenerate in .Comment: v3: version to appear in Eur.Phys.J.
Description of as a system with the fixed center approximation
We study the system with an aim to describe the
resonance. The chiral unitary approach has achieved success in a description of
systems of the light hadron sector. With this method, the system in
the isospin sector , is found to be a dominant component of the resonance. Therefore, by regarding the system as a cluster,
the resonance, we evaluate the system applying the
fixed center approximation to the Faddeev equations. We construct the
unitarized amplitude using the chiral unitary approach. As a result, we find a
peak in the three-body amplitude around 1739 MeV and a width of about 227 MeV.
The effect of the width of and is also discussed. We
associate this peak to the which has a mass of MeV
and a width of MeV
Surface States of the Topological Insulator Bi_{1-x}Sb_x
We study the electronic surface states of the semiconducting alloy BiSb.
Using a phenomenological tight binding model we show that the Fermi surface of
the 111 surface states encloses an odd number of time reversal invariant
momenta (TRIM) in the surface Brillouin zone confirming that the alloy is a
strong topological insulator. We then develop general arguments which show that
spatial symmetries lead to additional topological structure, and further
constrain the surface band structure. Inversion symmetric crystals have 8 Z_2
"parity invariants", which include the 4 Z_2 invariants due to time reversal.
The extra invariants determine the "surface fermion parity", which specifies
which surface TRIM are enclosed by an odd number of electron or hole pockets.
We provide a simple proof of this result, which provides a direct link between
the surface states and the bulk parity eigenvalues. We then make specific
predictions for the surface state structure for several faces of BiSb. We next
show that mirror invariant band structures are characterized by an integer
"mirror Chern number", n_M. The sign of n_M in the topological insulator phase
of BiSb is related to a previously unexplored Z_2 parameter in the L point k.p
theory of pure Bi, which we refer to as the "mirror chirality", \eta. The value
of \eta predicted by the tight binding model for Bi disagrees with the value
predicted by a more fundamental pseudopotential calculation. This explains a
subtle disagreement between our tight binding surface state calculation and
previous first principles calculations on Bi. This suggests that the tight
binding parameters in the Liu Allen model of Bi need to be reconsidered.
Implications for existing and future ARPES experiments and spin polarized ARPES
experiments will be discussed.Comment: 15 pages, 7 figure
Calibration of GRB Luminosity Relations with Cosmography
For the use of Gamma-Ray Bursts (GRBs) to probe cosmology in a
cosmology-independent way, a new method has been proposed to obtain luminosity
distances of GRBs by interpolating directly from the Hubble diagram of SNe Ia,
and then calibrating GRB relations at high redshift. In this paper, following
the basic assumption in the interpolation method that objects at the same
redshift should have the same luminosity distance, we propose another approach
to calibrate GRB luminosity relations with cosmographic fitting directly from
SN Ia data. In cosmography, there is a well-known fitting formula which can
reflect the Hubble relation between luminosity distance and redshift with
cosmographic parameters which can be fitted from observation data. Using the
Cosmographic fitting results from the Union set of SNe Ia, we calibrate five
GRB relations using GRB sample at and deduce distance moduli of GRBs
at by generalizing above calibrated relations at high
redshift. Finally, we constrain the dark energy parameterization models of the
Chevallier-Polarski-Linder (CPL) model, the Jassal-Bagla-Padmanabhan (JBP)
model and the Alam model with GRB data at high redshift, as well as with the
Cosmic Microwave Background radiation (CMB) and the baryonic acoustic
oscillation (BAO) observations, and we find the CDM model is
consistent with the current data in 1- confidence region.Comment: 15 pages, 4 figures, 2 tables; accepted for publication in IJMP
Photochemical colour change for traditional watercolour pigments in low oxygen levels
An investigation for light exposure on pigments in low-oxygen environments (in the range 0â5% oxygen) was conducted using a purpose-built automated microfadometer for a large sample set including multiple samples of traditional watercolour pigments from nineteenth-century and twentieth-century sources, selected for concerns over their stability in anoxia. The pigments were prepared for usage in watercolour painting: ground and mixed in gum Arabic and applied to historically accurate gelatine glue-sized cotton and linen-based papers. Anoxia benefited many colorants and no colorant fared worse in anoxia than in air, with the exception of Prussian blue and Prussian green (which contains Prussian blue). A Prussian blue sampled from the studio materials of J.M.W. Turner (1775 â 1851) was microfaded in different environments (normal air (20.9% oxygen) 0, 1, 2, 3.5, or 5% oxygen in nitrogen) and the subsequent dark behaviour was measured. The behaviour of the sample (in normal air, anoxia, and 5% oxygen in nitrogen) proved to be consistent with the 55 separately sourced Prussian blue samples. When exposed to light in 5% oxygen in nitrogen, Prussian blue demonstrated the same light stability as in air (at approximately 21°C and 1 atmosphere). Storage in 5% oxygen is proposed for âanoxicâ display of paper-based artworks that might contain Prussian blue, to protect this material while reducing light-induced damage to other components of a watercolour, including organic colorants and the paper support
SIRIS: a high resolution scanning infrared camera for examining paintings
The new SIRIS (Scanning InfraRed Imaging System) camera developed at the National Gallery in London allows highresolution images of paintings to be made in the near infrared region (900â1700 nm). Images of 5000 Ă 5000 pixels are made by moving a 320 Ă 256 pixel InGaAs array across the focal plane of the camera using two orthogonal translation stages. The great advantages of this camera over scanning infrared devices are its relative portability and that image acquisition is comparatively rapid â a full 5000 Ă 5000 pixel image can be made in around 20 minutes. The paper describes the development of the mechanical, optical and electronic components of the camera, including the design of a new lens. The software routines used to control image capture and to assemble the individual 320 Ă 256 pixel frames into a seamless mosaic image are also mentioned. The optics of the SIRIS camera have been designed so that the camera can operate at a range of resolutions; from around 2.5 pixels per millimetre on large paintings of up to 2000 Ă 2000 mm to 10 pixels per millimetre on smaller paintings or details of paintings measuring 500 Ă 500 mm. The camera is primarily designed to examine underdrawings in paintings; preliminary results from test targets and paintings are presented and the quality of the images compared with those from other cameras currently used in this field
- âŠ