8 research outputs found

    Supercurrents through gated superconductor-normal-metal-superconductor contacts: the Josephson-transistor

    Full text link
    We analyze the transport through a narrow ballistic superconductor-normal- metal-superconductor Josephson contact with non-ideal transmission at the superconductor-normal-metal interfaces, e.g., due to insulating layers, effective mass steps, or band misfits (SIN interfaces). The electronic spectrum in the normal wire is determined through the combination of Andreev- and normal reflection at the SIN interfaces. Strong normal scattering at the SIN interfaces introduces electron- and hole-like resonances in the normal region which show up in the quasi-particle spectrum. These resonances have strong implications for the critical supercurrent IcI_c which we find to be determined by the lowest quasi-particle level: tuning the potential ÎĽx0\mu_{x0} to the points where electron- and hole-like resonances cross, we find sharp peaks in IcI_{\rm c}, resulting in a transitor effect. We compare the performance of this Resonant Josephson-Transistor (RJT) with that of a Superconducting Single Electron Transistor (SSET).Comment: to appear in PRB, 11 pages, 9 figure

    Magnetoresistance of one-dimensional subbands in tunnel-coupled double quantum wires

    Get PDF
    We study the low-temperature in-plane magnetoresistance of tunnel-coupled quasi-one-dimensional quantum wires. The wires are defined by two pairs of mutually aligned split gates on opposite sides of a < 1 micron thick AlGaAs/GaAs double quantum well heterostructure, allowing independent control of their widths. In the ballistic regime, when both wires are defined and the field is perpendicular to the current, a large resistance peak at ~6 Tesla is observed with a strong gate voltage dependence. The data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands

    The chemistry of phosphine

    No full text
    corecore