366 research outputs found

    Three-body decays: structure, decay mechanism and fragment properties

    Full text link
    We discuss the three-body decay mechanisms of many-body resonances. R-matrix sequential description is compared with full Faddeev computation. The role of the angular momentum and boson symmetries is also studied. As an illustration we show the computed α\alpha-particle energy distribution after the decay of 12C(1^+) resonance at 12.7 MeV.Comment: 4 pages, 3 figures. Proceedings of the workshop "Critical Stability of Few-Body Quantum Systems" 200

    Neutron scattering and molecular correlations in a supercooled liquid

    Full text link
    We show that the intermediate scattering function Sn(q,t)S_n(q,t) for neutron scattering (ns) can be expanded naturely with respect to a set of molecular correlation functions that give a complete description of the translational and orientational two-point correlations in the liquid. The general properties of this expansion are discussed with special focus on the qq-dependence and hints for a (partial) determination of the molecular correlation functions from neutron scattering results are given. The resulting representation of the static structure factor Sn(q)S_n(q) is studied in detail for a model system using data from a molecular dynamics simulation of a supercooled liquid of rigid diatomic molecules. The comparison between the exact result for Sn(q)S_n(q) and different approximations that result from a truncation of the series representation demonstrates its good convergence for the given model system. On the other hand it shows explicitly that the coupling between translational (TDOF) and orientational degrees of freedom (ODOF) of each molecule and rotational motion of different molecules can not be neglected in the supercooled regime.Further we report the existence of a prepeak in the ns-static structure factor of the examined fragile glassformer, demonstrating that prepeaks can occur even in the most simple molecular liquids. Besides examining the dependence of the prepeak on the scattering length and the temperature we use the expansion of Sn(q)S_n(q) into molecular correlation functions to point out intermediate range orientational order as its principle origin.Comment: 13 pages, 7 figure

    Comparison of Isoscalar Vector Meson Production Cross Sections in Proton-Proton Collisions

    Get PDF
    The reaction pp→ppω pp\to pp\bf \omega was investigated with the TOF spectrometer, which is an external experiment at the accelerator COSY (Forschungszentrum J\"ulich, Germany). Total as well as differential cross sections were determined at an excess energy of 93MeV93 MeV (pbeam=2950MeV/cp_{beam}=2950 MeV/c). Using the total cross section of (9.0±0.7±1.1)ÎŒb(9.0\pm 0.7 \pm1.1) \mu b for the reaction pp→ppω pp\to pp\omega determined here and existing data for the reaction pp→ppϕpp\to pp\bf \phi, the ratio Rϕ/ω=σϕ/σω\mathcal{R}_{\phi/\omega}=\sigma_\phi/\sigma_\omega turns out to be significantly larger than expected by the Okubo-Zweig-Iizuka (OZI) rule. The uncertainty of this ratio is considerably smaller than in previous determinations. The differential distributions show that the ω\omega production is still dominated by S-wave production at this excess energy, however higher partial waves clearly contribute. A comparison of the measured angular distributions for ω\omega production to published distributions for ϕ\phi production at 83MeV83 MeV shows that the data are consistent with an identical production mechanism for both vector mesons

    Strong rescattering in K-> 3pi decays and low-energy meson dynamics

    Full text link
    We present a consistent analysis of final state interactions in K→3π{K\rightarrow 3\pi} decays in the framework of Chiral Perturbation Theory. The result is that the kinematical dependence of the rescattering phases cannot be neglected. The possibility of extracting the phase shifts from future KS−KLK_S-K_L interference experiments is also analyzed.Comment: 14 pages in RevTex, 3 figures in postscrip

    Leading Chiral Logarithms to the Hyperfine Splitting of the Hydrogen and Muonic Hydrogen

    Full text link
    We study the hydrogen and muonic hydrogen within an effective field theory framework. We perform the matching between heavy baryon effective theory coupled to photons and leptons and the relevant effective field theory at atomic scales. This matching can be performed in a perturbative expansion in alpha, 1/m_p and the chiral counting. We then compute the O(m_{l_i}^3 alpha^5/m_p^2 x logarithms) contribution (including the leading chiral logarithms) to the Hyperfine splitting and compare with experiment. They can explain about 2/3 of the difference between experiment and the pure QED prediction when setting the renormalization scale at the rho mass. We give an estimate of the matching coefficient of the spin-dependent proton-lepton operator in heavy baryon effective theory.Comment: 17 pages, LaTeX, minor changes, one reference adde

    Spin density matrix of the ω in the reaction pÂŻp→ωπ0

    Get PDF
    The spin density matrix of the ω has been determined for the reaction pÂŻp→ωπ0 with unpolarized in-flight data measured by the Crystal Barrel LEAR experiment at CERN. The two main decay modes of the ω into π0Îł and π+π-π0 have been separately analyzed for various pÂŻ momenta between 600 and 1940 MeV/c. The results obtained with the usual method by extracting the matrix elements via the ω decay angular distributions and with the more sophisticated method via a full partial wave analysis are in good agreement. A strong spin alignment of the ω is clearly visible in this energy regime and all individual spin density matrix elements exhibit an oscillatory dependence on the production angle. In addition, the largest contributing orbital angular momentum of the pÂŻp system has been identified for the different beam momenta. It increases from LpÂŻpmax = 2 at 600 MeV/c to LpÂŻpmax = 5 at 1940 MeV/c

    Proton Zemach radius from measurements of the hyperfine splitting of hydrogen and muonic hydrogen

    Full text link
    While measurements of the hyperfine structure of hydrogen-like atoms are traditionally regarded as test of bound-state QED, we assume that theoretical QED predictions are accurate and discuss the information about the electromagnetic structure of protons that could be extracted from the experimental values of the ground state hyperfine splitting in hydrogen and muonic hydrogen. Using recent theoretical results on the proton polarizability effects and the experimental hydrogen hyperfine splitting we obtain for the Zemach radius of the proton the value 1.040(16) fm. We compare it to the various theoretical estimates the uncertainty of which is shown to be larger that 0.016 fm. This point of view gives quite convincing arguments in support of projects to measure the hyperfine splitting of muonic hydrogen.Comment: Submitted to Phys. Rev.

    Muonic hydrogen ground state hyperfine splitting

    Full text link
    Corrections of orders alpha^5, alpha^6 are calculated in the hyperfine splitting of the muonic hydrogen ground state. The nuclear structure effects are taken into account in the one- and two-loop Feynman amplitudes by means of the proton electromagnetic form factors. The modification of the hyperfine splitting part of the Breit potential due to the electron vacuum polarization is considered. Total numerical value of the 1S state hyperfine splitting 182.638 meV in the (mu p) can play the role of proper estimation for the corresponding experiment with the accuracy 30 ppm.Comment: 18 pages, Talk presented at the 11th Lomonosov Conference on Elementary Particle Physics, Moscow State University, August 200

    Intragenic DNA methylation: implications of this epigenetic mechanism for cancer research

    Get PDF
    Epigenetics is the study of all mechanisms that regulate gene transcription and genome stability that are maintained throughout the cell division, but do not include the DNA sequence itself. The best-studied epigenetic mechanism to date is DNA methylation, where methyl groups are added to the cytosine base within cytosine–guanine dinucleotides (CpG sites). CpGs are frequently clustered in high density (CpG islands (CGIs)) at the promoter of over half of all genes. Current knowledge of transcriptional regulation by DNA methylation centres on its role at the promoter where unmethylated CGIs are present at most actively transcribed genes, whereas hypermethylation of the promoter results in gene repression. Over the last 5 years, research has gradually incorporated a broader understanding that methylation patterns across the gene (so-called intragenic or gene body methylation) may have a role in transcriptional regulation and efficiency. Numerous genome-wide DNA methylation profiling studies now support this notion, although whether DNA methylation patterns are a cause or consequence of other regulatory mechanisms is not yet clear. This review will examine the evidence for the function of intragenic methylation in gene transcription, and discuss the significance of this in carcinogenesis and for the future use of therapies targeted against DNA methylation

    Higher-Order Nuclear-Polarizability Corrections in Atomic Hydrogen

    Get PDF
    Nuclear-polarizability corrections that go beyond unretarded-dipole approximation are calculated analytically for hydrogenic (atomic) S-states. These retardation corrections are evaluated numerically for deuterium and contribute -0.68 kHz, for a total polarization correction of 18.58(7) kHz. Our results are in agreement with one previous numerical calculation, and the retardation corrections completely account for the difference between two previous calculations. The uncertainty in the deuterium polarizability correction is substantially reduced. At the level of 0.01 kHz for deuterium, only three primary nuclear observables contribute: the electric polarizability, αE\alpha_E, the paramagnetic susceptibility, ÎČM\beta_M, and the third Zemach moment, (2)_{(2)}. Cartesian multipole decomposition of the virtual Compton amplitude and its concomitant gauge sum rules are used in the analysis.Comment: 26 pages, latex, 1 figure -- Submitted to Phys. Rev. C -- epsfig.sty require
    • 

    corecore