35 research outputs found
Sequential Structural and Fluid Dynamics Analysis of Balloon-Expandable Coronary Stents: A Multivariable Statistical Analysis
Several clinical studies have identified a strong correlation between neointimal hyperplasia following coronary stent deployment and both stent-induced arterial injury and altered vessel hemodynamics. As such, the sequential structural and fluid dynamics analysis of balloon-expandable stent deployment should provide a comprehensive indication of stent performance. Despite this observation, very few numerical studies of balloon-expandable coronary stents have considered both the mechanical and hemodynamic impact of stent deployment. Furthermore, in the few studies that have considered both phenomena, only a small number of stents have been considered. In this study, a sequential structural and fluid dynamics analysis methodology was employed to compare both the mechanical and hemodynamic impact of six balloon-expandable coronary stents. To investigate the relationship between stent design and performance, several common stent design properties were then identified and the dependence between these properties and both the mechanical and hemodynamic variables of interest was evaluated using statistical measures of correlation. Following the completion of the numerical analyses, stent strut thickness was identified as the only common design property that demonstrated a strong dependence with either the mean equivalent stress predicted in the artery wall or the mean relative residence time predicted on the luminal surface of the artery. These results corroborate the findings of the large-scale ISAR-STEREO clinical studies and highlight the crucial role of strut thickness in coronary stent design. The sequential structural and fluid dynamics analysis methodology and the multivariable statistical treatment of the results described in this study should prove useful in the design of future balloon-expandable coronary stents
A Numerical Investigation of the Time Reversal Mirror Technique for Trans-skull Brain Cancer Ultrasound Surgery
Introduction: The medical applications of ultrasound on human brain are highly limited by the phase and amplitude aberrations induced by the heterogeneities of the skull. However, it has been shown that time reversing coupled with amplitude compensation can overcome these aberrations. In this work, a model for 2D simulation of the time reversal mirror technique is proposed to study the possibility of targeting any point within the brain without the need for craniotomy and to calculate the acoustic pressure field and the resulting temperature distribution within the skull and brain during a High Intensity Focused Ultrasound (HIFU) transcranial therapy. Materials and Methods: To overcome the sensitivity of the wave pattern to the heterogeneous geometry of the skull, a real MRI derived 2D model is constructed. The model should include the real geometry of brain and skull. The model should also include the couplant medium which has the responsibility of coupling the transducer to the skull for the penetration of ultrasound. The clinical substance used as the couplant is water. The acoustic and thermal parameters are derived from the references. Next, the wave propagation through the skull is computed based on the Helmholtz equation, with a 2D finite element analysis. The acoustic simulation is combined with a 2D thermal diffusion analysis based on Pennes Bioheat equation and the temperature elevation inside the skull and brain is computed. The numerical simulations were performed using the FEMLAB 3.2 software on a PC having 8 GB RAM and a 2.4 MHz dual CPU. Results: It is seen that the ultrasonic waves are exactly focalized at the location where the hydrophone has been previously implanted. There is no penetration into the sinuses and the waves are reflected from their surface because of the high discrepancy between the speed of sound in bone and air.  Under the focal pressure of 2.5 MPa and after 4 seconds of sonication the temperature at the focus reached 51 °C and the temperature of the pre-target bone increased to 56.31 °C. In the post-target region the temperature of the sphenoid bone increased to 47.1 °C while the temperature of the occipital bones reached up to 46 °C. It is also shown that by using a cold water cooling system and cooling down the pre-target bones to 20 °C before sonication, the maximum pre-target bone temperature will not exceed 40 °C and hence the pre-target bone cells will remain intact. Discussion and Conclusion: In this study, it is well demonstrated that by using the time reversal mirror technique it is possible to target any point within the skull without the need for craniotomy. Although at higher acoustic frequencies compared to the lower ones such as 300 kHz the ultrasound undergoes more severe aberrations while passing through media having geometrical heterogeneity and discrepant sound velocities, the simulations performed in this work show that even at such frequencies it is still possible to correct these aberrations using the time reversal mirror technique. The thermal simulations show that by using this method the temperature of the deep seated tumors can be increased to cytotoxic temperature in a few seconds
Recurring Multi-layer Moving Window Approach to Forecast Day-ahead and Week-ahead Load Demand Considering Weather Conditions
The incorporation of weather variables is crucial in developing an effective demand forecasting model because electricity demand is strongly influenced by weather conditions. The dependence of demand on weather conditions may change with time during a day. Therefore, the time stamped weather information is essential. In this paper, a multi-layer moving window approach is proposed to incorporate the significant weather variables, which are selected using Pearson and Spearman correlation techniques. The multi-layer moving window approach allows the layers to adjust their size to accommodate the weather variables based on their significance, which creates more flexibility and adaptability thereby improving the overall performance of the proposed approach. Furthermore, a recursive model is developed to forecast the demand in multi-step ahead. An electricity demand data for the state of New South Wales, Australia are acquired from the Australian Energy Market Operator and the associated results are reported in the paper. The results show that the proposed approach with dynamic incorporation of weather variables is promising for day-ahead and week-ahead load demand forecasting
Bacterial cellulose as a potential vascular graft: Mechanical characterization and constitutive model development.
Bacterial cellulose (BC) is a polysaccharide produced by Acetobacter Xylinum bacteria with interesting properties for arterial grafting and vascular tissue engineering including high-burst pressure, high-water content, high crystallinity, and an ultrafine highly pure fibrous structure similar to that of collagen. Given that compliance mismatch is one of the main factors contributing to the development of intimal hyperplasia in vascular replacement conduits, an in depth investigation of support mechanical properties of BC is required to further supporting its use in cardiovascular-grafting applications. The aim of this study was to mechanically characterize BC and also study its potential to accommodate vascular cells. To achieve these aims, inflation tests and uniaxial tensile tests were carried out on BC samples. In addition, dynamic compliance tests were conducted on BC tubes, and the results were compared to that of arteries, saphenous vein, expanded polytetrafluoroethylene, and Dacron grafts. BC tubes exhibited a compliance response similar to human saphenous vein with a mean compliance value of 4.27 × 10(-2) % per millimeter of mercury over the pressure range of 30-120 mmHg. In addition, bovine smooth muscle cells and endothelial cells were cultured on BC samples, and histology and fluorescent imaging analysis were carried out showing good adherence and biocompatibility. Finally, a method to predict the mechanical behavior of BC grafts in situ was established, whereby a constitutive model for BC was determined and used to model the BC tubes under inflation using finite element analysis
In-situ scanning electron microscopy study of fracture events during back-end-of-line microbeam bending tests
This paper demonstrates the direct observation of crack initiation, crack propagation, and interfacial delamination events during in-situ microbeam bending tests of FIB milled BEOL structures. The elastic modulus and the critical force of fracture of the BEOL beam samples were compared for beams of different length and width.status: publishe
Introducing the EUV CNT pellicle
EUV lithography insertion is anticipated at the 7 nm node and below; however, defects added to the mask during use is a lingering concern. Defectivity in the scanner is non-zero and an EUV pellicle membrane to protect the mask for high volume manufacturing power levels does not yet exist. The EUV photons are strongly absorbed by all materials. Sibased membranes leverage the low absorption coefficient k value (k = 0.0018 at 13.5 nm) for reasonable transmission, but poly Si becomes fragile and wrinkles during the high temperatures associated with exposure. An alternate approach to high transmission is deploying very thin or porous layers so that there are fewer atoms to absorb light. For example, carbon nanomaterials have a reasonably low k value (k = 0.0069), but are strong enough to be fabricated in very thin layers. Graphene, graphite, carbon-nanosheets and carbon nanotubes are all candidate carbon nanomaterials for this application, but we focus here on carbon nanotubes (CNTs). Our first measurements on CNT films of ~60 nm thick were found to have 96.5% transmission at 13.5 nm. Adding CNT layers also enhanced the strength of a thin SiN membrane significantly. In this paper, critical pellicle metrics will be evaluated in more detail: EUV transmission, bulge test for mechanical strength, emissivity measurements for heat management, and exposure testing in a hydrogen environment
A study of balloon type, system constraint and artery constitutive model used in finite element simulation of stent deployment
This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/This paper carried out a comparative study of different practices used in finite element
simulation of stent deployment, with a focus on the choice of balloon type, system constraint
and artery constitutive model. Folded balloon produces sustained stent expansion under a lower
pressure when compared to rubber balloon. The maximum stresses on the stent and stenotic
artery are considerably higher for simulations using a folded balloon, due to the assumed elastic
behaviour of the folded balloon which signified the contact stresses between the balloon and the
stent. The achieved final diameter is larger for folded balloon than that for rubber balloon, with
increased dogboning and decreased recoiling effects. Fully constrained artery reduces the final
expansion when compared to a free artery and a partially constrained artery due to the increased
recoiling effect. The stress on the plaque-artery system has similar distribution for all three types
of artery constraints (full, partial and free of constraints), but the magnitude is higher for a free
artery as a result of more severe stretch. Stenotic plaque model plays a dominant role in
controlling stent expansion, and calcified plaque model leads to a considerably lower expansion
than hypocellular plaque model. Simulations using Ogden and 6-parameter polynomial models
generate different behaviour for stent expansion. For Ogden model, stent expansion approaches
the saturation at a certain stage of balloon inflation, while saturation is not observed for 6-
2
parameter polynomial model due to the negligence of the second stretch invariant in the strain
energy potential. The use of anisotropic model for the vessel layers reduced the expansion at
peak pressure when compared to the simulation using an isotropic model, but the final diameter
increased due to the significantly reduced recoiling effect. The stress distribution in the arteryplaque
system is also different for different combination of artery and plaque constitutive
models. In conclusion, folded balloon should be used in the simulation of stent deployment,
with the artery partially constrained using spring elements with a proper stiffness constant. The
blood vessel should be modelled as a three-layer structure using a hyperelastic potential that
considers both the first and second stretch invariants as well as the anisotropy. The composition
of the plaque also has to be considered due to its major effect on stent deployment