12 research outputs found

    Isolation of an acetyl-CoA synthetase gene (ZbACS2) from Zygosaccharomyces bailii

    Get PDF
    A gene homologous to Saccharomyces cerevisiae ACS genes, coding for acetyl-CoA synthetase, has been cloned from the yeast Zygosaccharomyces bailii ISA 1307, by using reverse genetic approaches. A probe obtained by PCR amplification from Z. bailii DNA, using primers derived from two conserved regions of yeast ACS proteins, RIGAIHSVVF (ScAcs1p; 210–219) and RVDDVVNVSG (ScAcs1p; 574–583), was used for screening a Z. bailii genomic library. Nine clones with partially overlapping inserts were isolated. The sequenced DNA fragment contains a complete ORF of 2027 bp (ZbACS2) and the deduced polypeptide shares significant homologies with the products of ACS2 genes from S. cerevisiae and Kluyveromyces lactis (81% and 82% identity and 84% and 89% similarity, respectively). Phylogenetic analysis shows that the sequence of Zbacs2 is more closely related to the sequences from Acs2 than to those from Acs1 proteins. Moreover, this analysis revealed that the gene duplication producing Acs1 and Acs2 proteins has occurred in the common ancestor of S. cerevisiae, K. lactis, Candida albicans, C. glabrata and Debaryomyces hansenii lineages. Additionally, the cloned gene allowed growth of S. cerevisiae Scacs2 null mutant, in medium containing glucose as the only carbon and energy source, indicating that it encodes a functional acetyl-CoA synthetase. Also, S. cerevisiae cells expressing ZbACS2 have a shorter lag time, in medium containing glucose (2%, w/v) plus acetic acid (0.1–0.35%, v/v). No differences in cell response to acetic acid stress were detected both by specific growth and death rates. The mode of regulation of ZbACS2 appears to be different from ScACS2 and KlACS2, being subject to repression by a glucose pulse in acetic acid-grown cells. The nucleotide sequence of a common 5269 bp fragment has been deposited in the EMBL Data Library under Accession No. AJ314837.Fundação para a Ciência e a Tecnologia (FCT) - PRAXIS XXI P/AGR/11135/9

    PDA1

    No full text

    The Spoilage Yeast Zygosaccharomyces bailii Forms Mitotic Spores: a Screening Method for Haploidization

    Get PDF
    Zygosaccharomyces bailii ISA 1307 and the type strain of this spoilage yeast show a diploid DNA content. Together with a rather peculiar life cycle in which mitotic but no meiotic spores appear to be formed, the diploid DNA content explains the observed difficulties in obtaining auxotrophic mutants. Mitotic chromosome loss induced by benomyl and selection on canavanine media resulted in three haploid strains of Z. bailii. This new set of Z. bailii strains allows the easy isolation of recessive mutants and is suitable for further molecular genetic studies

    Effects of Pyruvate Decarboxylase Overproduction on Flux Distribution at the Pyruvate Branch Point in Saccharomyces cerevisiae

    No full text
    A multicopy plasmid carrying the PDC1 gene (encoding pyruvate decarboxylase; Pdc) was introduced in Saccharomyces cerevisiae CEN.PK113-5D. The physiology of the resulting prototrophic strain was compared with that of the isogenic prototrophic strain CEN.PK113-7D and an empty-vector reference strain. In glucose-grown shake-flask cultures, the introduction of the PDC1 plasmid caused a threefold increase in the Pdc level. In aerobic glucose-limited chemostat cultures growing at a dilution rate of 0.10 h(−1), Pdc levels in the overproducing strain were 14-fold higher than those in the reference strains. Levels of glycolytic enzymes decreased by ca. 15%, probably due to dilution by the overproduced Pdc protein. In chemostat cultures, the extent of Pdc overproduction decreased with increasing dilution rate. The high degree of overproduction of Pdc at low dilution rates did not affect the biomass yield. The dilution rate at which aerobic fermentation set in decreased from 0.30 h(−1) in the reference strains to 0.23 h(−1) in the Pdc-overproducing strain. In the latter strain, the specific respiration rate reached a maximum above the dilution rate at which aerobic fermentation first occurred. This result indicates that a limited respiratory capacity was not responsible for the onset of aerobic fermentation in the Pdc-overproducing strain. Rather, the results indicate that Pdc overproduction affected flux distribution at the pyruvate branch point by influencing competition for pyruvate between Pdc and the mitochondrial pyruvate dehydrogenase complex. In respiratory cultures (dilution rate, <0.23 h(−1)), Pdc overproduction did not affect the maximum glycolytic capacity, as determined in anaerobic glucose-pulse experiments
    corecore