26 research outputs found
Compositional sequence labeling models for error detection in learner writing
© 2016 Association for Computational Linguistics. In this paper, we present the first experiments using neural network models for the task of error detection in learner writing. We perform a systematic comparison of alternative compositional architectures and propose a framework for error detection based on bidirectional LSTMs. Experiments on the CoNLL-14 shared task dataset show the model is able to outperform other participants on detecting errors in learner writing. Finally, the model is integrated with a publicly deployed self-assessment system, leading to performance comparable to human annotators
Automatic text scoring using neural networks
Automated Text Scoring (ATS) provides
a cost-effective and consistent alternative
to human marking. However, in order
to achieve good performance, the predictive
features of the system need to
be manually engineered by human experts.
We introduce a model that forms
word representations by learning the extent
to which specific words contribute to
the text’s score. Using Long-Short Term
Memory networks to represent the meaning
of texts, we demonstrate that a fully
automated framework is able to achieve
excellent results over similar approaches.
In an attempt to make our results more
interpretable, and inspired by recent advances
in visualizing neural networks, we
introduce a novel method for identifying
the regions of the text that the model has
found more discriminative.This is the accepted manuscript. It is currently embargoed pending publication
Investigating the effect of auxiliary objectives for the automated grading of learner english speech transcriptions
We address the task of automatically grading the language proficiency of spontaneous speech based on textual features from automatic speech recognition transcripts. Motivated by recent advances in multi-task learning, we develop neural networks trained in a multi-task fashion that learn to predict the proficiency level of non-native English speakers by taking advantage of inductive transfer between the main task (grading) and auxiliary prediction tasks: morpho-syntactic labeling, language modeling, and native language identification (L1). We encode the transcriptions with both bi-directional recurrent neural networks and with bi-directional representations from transformers, compare against a feature-rich baseline, and analyse performance at different proficiency levels and with transcriptions of varying error rates. Our best performance comes from a transformer encoder with L1 prediction as an auxiliary task. We discuss areas for improvement and potential applications for text-only speech scoring.Cambridge Assessmen
FewShotTextGCN: K-hop neighborhood regularization for few-shot learning on graphs
We present FewShotTextGCN, a novel method designed to effectively utilize the properties of word-document graphs for improved learning in low-resource settings. We introduce K-hop Neighborhood Regularization, a regularizer for heterogeneous graphs, and show that it stabilizes and improves learning when only a few training samples are available. We furthermore propose a simplification in the graph-construction method, which results in a graph that is ∼7 times less dense and yields better performance in low-resource settings while performing on-par with the state of the art in high-resource settings. Finally, we introduce a new variant of Adaptive Pseudo-Labeling tailored for word-document graphs. When using as little as 20 samples for training, we outperform a strong TextGCN baseline with 17% in absolute accuracy on average over eight languages. We demonstrate that our method can be applied to document classification without any language model pretraining on a wide range of typologically diverse languages while performing on par with large pretrained language models.</p
CK-Transformer: Commonsense Knowledge Enhanced Transformers for Referring Expression Comprehension
The task of multimodal referring expression comprehension (REC), aiming at localizing an image region described by a natural language expression, has recently received increasing attention within the research comminity. In this paper, we specifically focus on referring expression comprehension with commonsense knowledge (KB-Ref), a task which typically requires reasoning beyond spatial, visual or semantic information. We propose a novel framework for Commonsense Knowledge Enhanced Transformers (CK-Transformer) which effectively integrates commonsense knowledge into the representations of objects in an image, facilitating identification of the target objects referred to by the expressions. We conduct extensive experiments on several benchmarks for the task of KB-Ref. Our results show that the proposed CK-Transformer achieves a new state of the art, with an absolute improvement of 3.14%</p