1,034 research outputs found
Photon-energy dissipation caused by an external electric circuit in "virtual" photo-excitation processes
We consider generation of an electrical pulse by an optical pulse in the
``virtual excitation'' regime. The electronic system, which is any
electro-optic material including a quantum well structure biased by a dc
electric field, is assumed to be coupled to an external circuit. It is found
that the photon frequency is subject to an extra red shift in addition to the
usual self-phase modulation, whereas the photon number is conserved. The Joule
energy consumed in the external circuit is supplied only from the extra red
shift.Comment: 4 pages, 1 fugur
Observation of Jonscher Law in AC Hopping Conduction of Electron-Doped Nanoporous Crystal 12CaO7Al2O3 in THz Frequency Range
We have performed terahertz time-domain spectroscopy of carrier-doped
nanoporous crystal 12CaO7Al2O3 showing the Mott variable range hopping at room
temperature. The real part of the dielectric constant clearly demonstrates the
nature of localized carriers. The frequency dependence of both the real and
imaginary parts of the dielectric constant can be simply explained by assuming
two contributions: a dielectric response by the parent compound with no
carriers and an AC hopping conduction with the Jonscher law generally reported
up to GHz range. The possible obedience to the Jonscher law in the THz range
suggests a relaxation time of the hopping carriers much faster than 1ps in the
carrier-doped 12CaO7Al2O3.Comment: 4pages 3figures. to be published in Phys. Rev.
- …