37,679 research outputs found

    Heaviside transform with respect to the mass in QCD

    Full text link
    We propose the use of Heaviside transform with respect to the quark mass to investigate dynamical aspects of QCD. We show that at large momentum transfer the transformed propagator of massive quarks behaves softly and thus the dominant effect of explicit chiral symmetry breaking disappears through Heaviside transform. This suggests that the massless approximation would be more convenient to do in the transformed quantity than in the original one. As an example of explicit approximation, we estimate the massless value of the quark condensate.Comment: 11pages, Latex, to appear in Mod. Phys. Lett.

    Dynamics and neutrino signal of black hole formation in non-rotating failed supernovae. II. progenitor dependence

    Full text link
    We study the progenitor dependence of the black hole formation and its associated neutrino signals from the gravitational collapse of non-rotating massive stars, following the preceding study on the single progenitor model in Sumiyoshi et al. (2007). We aim to clarify whether the dynamical evolution toward the black hole formation occurs in the same manner for different progenitors and to examine whether the characteristic of neutrino bursts is general having the short duration and the rapidly increasing average energies. We perform the numerical simulations by general relativistic neutrino-radiation hydrodynamics to follow the dynamical evolution from the collapse of pre-supernova models of 40Msun and 50Msun toward the black hole formation via contracting proto-neutron stars. For the three progenitor models studied in this paper, we found that the black hole formation occurs in ~0.4-1.5 s after core bounce through the increase of proto-neutron star mass together with the short and energetic neutrino burst. We found that density profile of progenitor is important to determine the accretion rate onto the proto-neutron star and, therefore, the duration of neutrino burst. We compare the neutrino bursts of black hole forming events from different progenitors and discuss whether we can probe clearly the progenitor and/or the dense matter.Comment: 30 pages, 11 figures, accepted for publication in Ap

    Dynamics and neutrino signal of black hole formation in non-rotating failed supernovae. I. EOS dependence

    Full text link
    We study the black hole formation and the neutrino signal from the gravitational collapse of a non-rotating massive star of 40 Msun. Adopting two different sets of realistic equation of state (EOS) of dense matter, we perform the numerical simulations of general relativistic neutrino-radiation hydrodynamics under the spherical symmetry. We make comparisons of the core bounce, the shock propagation, the evolution of nascent proto-neutron star and the resulting re-collapse to black hole to reveal the influence of EOS. We also explore the influence of EOS on the neutrino emission during the evolution toward the black hole formation. We find that the speed of contraction of the nascent proto-neutron star, whose mass increases fast due to the intense accretion, is different depending on the EOS and the resulting profiles of density and temperature differ significantly. The black hole formation occurs at 0.6-1.3 sec after bounce when the proto-neutron star exceeds its maximum mass, which is crucially determined by the EOS. We find that the average energies of neutrinos increase after bounce because of rapid temperature increase, but at different speeds depending on the EOS. The duration of neutrino emission up to the black hole formation is found different according to the different timing of re-collapse. These characteristics of neutrino signatures are distinguishable from those for ordinary proto-neutron stars in successful core-collapse supernovae. We discuss that a future detection of neutrinos from black-hole-forming collapse will contribute to reveal the black hole formation and to constrain the EOS at high density and temperature.Comment: 32 pages, 33 figures, accepted for publication in Ap

    Electrochemical kinetics and dimensional considerations at the nanoscale

    Full text link
    It is shown that the consideration of the density of states variation in nanoscale electrochemical systems yields modulations in the rate constant and concomitant electrical currents. The proposed models extend the utility of Marcus-Hush-Chidsey (MHC) kinetics to a larger class of materials and could be used as a test of dimensional character. The implications of the study are of much significance to an understanding and modulation of charge transfer nanostructured electrodes.Comment: 15 pages, 6 figure

    Monopole Excitation to Cluster States

    Get PDF
    We discuss strength of monopole excitation of the ground state to cluster states in light nuclei. We clarify that the monopole excitation to cluster states is in general strong as to be comparable with the single particle strength and shares an appreciable portion of the sum rule value in spite of large difference of the structure between the cluster state and the shell-model-like ground state. We argue that the essential reasons of the large strength are twofold. One is the fact that the clustering degree of freedom is possessed even by simple shell model wave functions. The detailed feature of this fact is described by the so-called Bayman-Bohr theorem which tells us that SU(3) shell model wave function is equivalent to cluster model wave function. The other is the ground state correlation induced by the activation of the cluster degrees of freedom described by the Bayman-Bohr theorem. We demonstrate, by deriving analytical expressions of monopole matrix elements, that the order of magnitude of the monopole strength is governed by the first reason, while the second reason plays a sufficient role in reproducing the data up to the factor of magnitude of the monopole strength. Our explanation is made by analysing three examples which are the monopole excitations to the 02+0^+_2 and 03+0^+_3 states in 16^{16}O and the one to the 02+0^+_2 state in 12^{12}C. The present results imply that the measurement of strong monopole transitions or excitations is in general very useful for the study of cluster states.Comment: 11 pages, 1 figure: revised versio

    Crystal-field-induced magnetostrictions in the spin reorientation process of Nd2_2Fe14_{14}B-type compounds

    Full text link
    Volume expansion ΔV/V\Delta V / V associated with the spin reorientation process of Nd2_2Fe14_{14}B-type compounds has been investigated in terms of simple crystalline-electric-field (CEF) model. In this system, ΔV/V\Delta V / V is shown to be a direct measure of second order CEF energy. Calculated anomalies in ΔV/V\Delta V / V associated with the first-order magnetization process of Nd2_2Fe14_{14}B are presented, which well reproduced the observations.Comment: 2 pages, 2 figures, to appear in J. Magn. Magn. Mate
    • …
    corecore