38,934 research outputs found
Proton modified Pt zeolite fuel cell electrocatalysts
NaY Zeolite is selected as a suitable material to host 1.5 wt% Platinum (Pt) loading on zeolite using ion exchange method (a) Pt(NH3)4(NO3)2 without excess NH4NO3 nitrate and (b) Pt(NH3)4(NO3)2 with excess NH4NO3 nitrate. The structure/reactivity relationship of Pt nanoparticle has been experimentally studied via Nafion@ bound electrodes to investigate the interaction nature of Pt with zeolite and electron transfer using the extended X-ray adsorption fine structure (EXAFS) and Pt particle was predicted at 0.7 β 1.5 (nm). Pt oxides can be electrochemically reduced via a hydrogen βspilloverβ phenomenon. A highly dispersed small Pt particle distribution can be achieved with excessive H+ ions on zeolite acidic sites
Systematic study of the symmetry energy coefficient in finite nuclei
The symmetry energy coefficients in finite nuclei have been studied
systematically with a covariant density functional theory (DFT) and compared
with the values calculated using several available mass tables. Due to the
contamination of shell effect, the nuclear symmetry energy coefficients
extracted from the binding energies have large fluctuations around the nuclei
with double magic numbers. The size of this contamination is shown to be
smaller for the nuclei with larger isospin value. After subtracting the shell
effect with the Strutinsky method, the obtained nuclear symmetry energy
coefficients with different isospin values are shown to decrease smoothly with
the mass number and are subsequently fitted to the relation . The resultant volume and
surface coefficients from axially deformed covariant DFT calculations are
and MeV respectively. The ratio is in good
agreement with the value derived from the previous calculations with the
non-relativistic Skyrme energy functionals. The coefficients and
corresponding to several available mass tables are also extracted. It is shown
that there is a strong linear correlation between the volume and surface
coefficients and the ratios are in between for all
the cases.Comment: 16 pages, 6 figure
Contract Violations in the Construction Projects: How Contractual Obligations are Reached Affects Contractual and Reputational Enforcement
Contract violations are frequent in construction projects due to the higher level of uncertainty and complexity in these projects. However, enforcement after a violation, including contractual and reputational enforcement, has received limited attention. This study distinguishes between three types of violations, i.e., violations of documented obligations (letter violations), violations of tacitly agreed obligations (spirit violations #1), and violations of unilaterally assumed obligations (spirit violations #2), based on the documentation and mutuality dimensions. Furthermore, this study compares the impacts of different types of violations on contractual and reputational enforcement and explores the mediating role of relational risk perception in the above impacts. By using the data collected from Chinese general contractors, this study concludes that compared with spirit violations #2, letter violations and spirit violations #1 will lead to more severe contractual enforcement and reputational enforcement while the latter two have no significant differences of their influence on the severity of enforcement. The mediating effects of relational risk perception are empirically supported. By doing this, this study contributes to the literature on contractual governance by exploring the effects of contract structure, especially the undocumented elements of contracts, on enforcement, and responds to the recent calls for the positive role of contract ambiguity. In addition, this study fills the gaps in the scarce literature on reputational enforcement and expands the studies on the antecedents of it. Project managers can benefit from this study by recognizing the employment of reputational enforcement and the making better alignment between different types of violations and enforcement
Final stare interaction enhancement effect on the near threshold p\bar p system in B^\pm\to p\bar p \p^\pm decay
We discuss the low-mass enhancement effect in the baryon-antibaryon invariant
mass in three-body baryonic B decays using final state interactions in the
framework of Regge theory. We show that the rescattering between baryonic pair
can reproduce the observed mass spectrum.Comment: 7 pages, 11 figure
A bi-level model of dynamic traffic signal control with continuum approximation
This paper proposes a bi-level model for traffic network signal control, which is formulated as a dynamic Stackelberg game and solved as a mathematical program with equilibrium constraints (MPEC). The lower-level problem is a dynamic user equilibrium (DUE) with embedded dynamic network loading (DNL) sub-problem based on the LWR model (Lighthill and Whitham, 1955; Richards, 1956). The upper-level decision variables are (time-varying) signal green splits with the objective of minimizing network-wide travel cost. Unlike most existing literature which mainly use an on-and-off (binary) representation of the signal controls, we employ a continuum signal model recently proposed and analyzed in Han et al. (2014), which aims at describing and predicting the aggregate behavior that exists at signalized intersections without relying on distinct signal phases. Advantages of this continuum signal model include fewer integer variables, less restrictive constraints on the time steps, and higher decision resolution. It simplifies the modeling representation of large-scale urban traffic networks with the benefit of improved computational efficiency in simulation or optimization. We present, for the LWR-based DNL model that explicitly captures vehicle spillback, an in-depth study on the implementation of the continuum signal model, as its approximation accuracy depends on a number of factors and may deteriorate greatly under certain conditions. The proposed MPEC is solved on two test networks with three metaheuristic methods. Parallel computing is employed to significantly accelerate the solution procedure
In-plane thermal conductivity of large single crystals of Sm-substituted (YSm)BaCuO
We have investigated the in-plane thermal conductivity of
large single crystals of optimally oxygen-doped
(Y,Sm)BaCuO (=0, 0.1, 0.2 and 1.0)
and YBa(CuZn)O(=0.0071) as functions
of temperature and magnetic field (along the c axis). For comparison, the
temperature dependence of for as-grown crystals with the
corresponding compositions are presented.
The nonlinear field dependence of for all crystals was observed
at relatively low fields near a half of . We make fits of the
data to an electron contribution model, providing both the mean
free path of quasiparticles and the electronic thermal conductivity
, in the absence of field. The local lattice distortion due to the
Sm substitution for Y suppresses both the phonon and electron contributions. On
the other hand, the light Zn doping into the CuO planes affects solely
the electron component below , resulting in a substantial decrease in
.Comment: 7 pages,4 figures,1 tabl
- β¦