49,054 research outputs found

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora

    Get PDF

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Z-graded weak modules and regularity

    Full text link
    It is proved that if any Z-graded weak module for vertex operator algebra V is completely reducible, then V is rational and C_2-cofinite. That is, V is regular. This gives a natural characterization of regular vertex operator algebras.Comment: 9 page

    Algebraic approach to the Hulthen potential

    Full text link
    In this paper the energy eigenvalues and the corresponding eigenfunctions are calculated for Hulthen potential. Then we obtain the ladder operators and show that these operators satisfy SU(2) commutation relation.Comment: 8 Pages, 1 Tabl

    Phase equilibrium in two orbital model under magnetic field

    Full text link
    The phase equilibrium in manganites under magnetic field is studied using a two orbital model, based on the equivalent chemical potential principle for the competitive phases. We focus on the magnetic field induced melting process of CE phase in half-doped manganites. It is predicted that the homogenous CE phase begins to decompose into coexisting ferromagnetic phase and CE phase once the magnetic field exceeds the threshold field. In a more quantitative way, the volume fractions of the two competitive phases in the phase separation regime are evaluated.Comment: 4 pages, 4 figure

    Modular Invariance for Twisted Modules over a Vertex Operator Superalgebra

    Get PDF
    The purpose of this paper is to generalize Zhu's theorem about characters of modules over a vertex operator algebra graded by integer conformal weights, to the setting of a vertex operator superalgebra graded by rational conformal weights. To recover SL_2(Z)-invariance of the characters it turns out to be necessary to consider twisted modules alongside ordinary ones. It also turns out to be necessary, in describing the space of conformal blocks in the supersymmetric case, to include certain `odd traces' on modules alongside traces and supertraces. We prove that the set of supertrace functions, thus supplemented, spans a finite dimensional SL_2(Z)-invariant space. We close the paper with several examples.Comment: 42 pages. Published versio

    Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2

    Full text link
    The in-plane resistivity ρ\rho and thermal conductivity κ\kappa of FeAs-based superconductor KFe2_2As2_2 single crystal were measured down to 50 mK. We observe non-Fermi-liquid behavior ρ(T)T1.5\rho(T) \sim T^{1.5} at Hc2H_{c_2} = 5 T, and the development of a Fermi liquid state with ρ(T)T2\rho(T) \sim T^2 when further increasing field. This suggests a field-induced quantum critical point, occurring at the superconducting upper critical field Hc2H_{c_2}. In zero field there is a large residual linear term κ0/T\kappa_0/T, and the field dependence of κ0/T\kappa_0/T mimics that in d-wave cuprate superconductors. This indicates that the superconducting gaps in KFe2_2As2_2 have nodes, likely d-wave symmetry. Such a nodal superconductivity is attributed to the antiferromagnetic spin fluctuations near the quantum critical point.Comment: 4 pages, 4 figures - replaces arXiv:0909.485
    corecore