898 research outputs found

    Phonon Dispersion Effects and the Thermal Conductivity Reduction in GaAs/AlAs Superlattices

    Full text link
    The experimentally observed order-of-magnitude reduction in the thermal conductivity along the growth axis of (GaAs)_n/(AlAs)_n (or n x n) superlattices is investigated theoretically for (2x2), (3x3) and (6x6) structures using an accurate model of the lattice dynamics. The modification of the phonon dispersion relation due to the superlattice geometry leads to flattening of the phonon branches and hence to lower phonon velocities. This effect is shown to account for a factor-of-three reduction in the thermal conductivity with respect to bulk GaAs along the growth direction; the remainder is attributable to a reduction in the phonon lifetime. The dispersion-related reduction is relatively insensitive to temperature (100 < T < 300K) and n. The phonon lifetime reduction is largest for the (2x2) structures and consistent with greater interface scattering. The thermal conductivity reduction is shown to be appreciably more sensitive to GaAs/AlAs force constant differences than to those associated with molecular masses.Comment: 5 figure

    Polarization correlations in the two--photon decay of hydrogen--like ions

    Full text link
    Polarization properties of the photons emitted in the two-photon decay of hydrogen-like ions are studied within the framework of the density matrix and second-order perturbation theory. In particular, we derive the polarization correlation function that gives the probability of the (two-photon) coincidence measurement performed by polarization-sensitive detectors. Detailed calculations of this function are performed for the 2s1/21s1/22s_{1/2} \to 1s_{1/2} transition in neutral hydrogen as well as Xe53+^{53+} and U91+^{91+} ions. The obtained results allow us to understand the influence of relativistic and non-dipole effects on the polarization correlations in the bound-bound two-photon transitions in heavy ions

    Exchange Instabilities in Semiconductor Double Quantum Well Systems

    Full text link
    We consider various exchange-driven electronic instabilities in semiconductor double-layer systems in the absence of any external magnetic field. We establish that there is no exchange-driven bilayer to monolayer charge transfer instability in the double-layer systems. We show that, within the unrestricted Hartree-Fock approximation, the low density stable phase (even in the absence of any interlayer tunneling) is a quantum ``pseudospin rotated'' spontaneous interlayer phase coherent spin-polarized symmetric state rather than the classical Ising-like charge-transfer phase. The U(1) symmetry of the double quantum well system is broken spontaneously at this low density quantum phase transition, and the layer density develops quantum fluctuations even in the absence of any interlayer tunneling. The phase diagram for the double quantum well system is calculated in the carrier density--layer separation space, and the possibility of experimentally observing various quantum phases is discussed. The situation in the presence of an external electric field is investigated in some detail using the spin-polarized-local-density-approximation-based self-consistent technique and good agreement with existing experimental results is obtained.Comment: 24 pages, figures included. Also available at http://www-cmg.physics.umd.edu/~lzheng/preprint/ct.uu/ . Revised final version to appear in PR

    On the c-axis optical reflectivity of layered cuprate superconductors

    Full text link
    Using a conventional BCS -- Fermi liquid model we calculate the c-axis optical reflectivity of the layered high temperature cuprate superconductors by obtaining the finite temperature dynamical dielectric function in a microscopic self-consistent gauge invariant formalism. We get good semi-quantitative agreement with all the existing experimental data by using the measured normal state dcdc resistivities as the input parameters in obtaining the c-axis hopping amplitude and the normal state level broadening in our microscopic calculation.Comment: 10 pages, 6 figures, 1 table gzipped tar fil

    Theory of the c-Axis Penetration Depth in the Cuprates

    Full text link
    Recent measurements of the London penetration depth tensor in the cuprates find a weak temperature dependence along the c-direction which is seemingly inconsistent with evidence for d-wave pairing deduced from in-plane measurements. We demonstrate in this paper that these disparate results are not in contradiction, but can be explained within a theory based on incoherent quasiparticle hopping between the CuO2 layers. By relating the calculated temperature dependence of the penetration depth \lambda_c(T) to the c-axis resistivity, we show how the measured ratio \lambda_c^2(0) / \lambda_c^2(T) can provide insight into the behavior of c-axis transport below Tc and the related issue of ``confinement.''Comment: 4 pages, REVTEX with psfig, 3 PostScript figures included in compressed for

    Local versus non-local information in quantum information theory: formalism and phenomena

    Get PDF
    In spite of many results in quantum information theory, the complex nature of compound systems is far from being clear. In general the information is a mixture of local, and non-local ("quantum") information. To make this point more clear, we develop and investigate the quantum information processing paradigm in which parties sharing a multipartite state distill local information. The amount of information which is lost because the parties must use a classical communication channel is the deficit. This scheme can be viewed as complementary to the notion of distilling entanglement. After reviewing the paradigm, we show that the upper bound for the deficit is given by the relative entropy distance to so-called psuedo-classically correlated states; the lower bound is the relative entropy of entanglement. This implies, in particular, that any entangled state is informationally nonlocal i.e. has nonzero deficit. We also apply the paradigm to defining the thermodynamical cost of erasing entanglement. We show the cost is bounded from below by relative entropy of entanglement. We demonstrate the existence of several other non-local phenomena. For example,we prove the existence of a form of non-locality without entanglement and with distinguishability. We analyze the deficit for several classes of multipartite pure states and obtain that in contrast to the GHZ state, the Aharonov state is extremely nonlocal (and in fact can be thought of as quasi-nonlocalisable). We also show that there do not exist states, for which the deficit is strictly equal to the whole informational content (bound local information). We then discuss complementary features of information in distributed quantum systems. Finally we discuss the physical and theoretical meaning of the results and pose many open questions.Comment: 35 pages in two column, 4 figure

    On asymptotic continuity of functions of quantum states

    Full text link
    A useful kind of continuity of quantum states functions in asymptotic regime is so-called asymptotic continuity. In this paper we provide general tools for checking if a function possesses this property. First we prove equivalence of asymptotic continuity with so-called it robustness under admixture. This allows us to show that relative entropy distance from a convex set including maximally mixed state is asymptotically continuous. Subsequently, we consider it arrowing - a way of building a new function out of a given one. The procedure originates from constructions of intrinsic information and entanglement of formation. We show that arrowing preserves asymptotic continuity for a class of functions (so-called subextensive ones). The result is illustrated by means of several examples.Comment: Minor corrections, version submitted for publicatio

    Disorder and chain superconductivity in YBa_2Cu_3O_{7-\delta}

    Full text link
    The effects of chain disorder on superconductivity in YBa_2Cu_3O_{7-\delta} are discussed within the context of a proximity model. Chain disorder causes both pair-breaking and localization. The hybridization of chain and plane wavefunctions reduces the importance of localization, so that the transport anisotropy remains large in the presence of a finite fraction δ\delta of oxygen vacancies. Penetration depth and specific heat measurements probe the pair-breaking effects of chain disorder, and are discussed in detail at the level of the self-consistent T-matrix approximation. Quantitative agreement with these experiments is found when chain disorder is present.Comment: 4 pages, 2 figures, submitted to PRB rapid communication

    Elevation of Matrix Metalloproteinases in Different Areas of Ascending Aortic Aneurysms in Patients with Bicuspid and Tricuspid Aortic Valves

    Get PDF
    Our aim is to investigate the elevation of matrix proteins in tissues obtained from distal, above the sinotubular junction (proximal), concave, and convex sites of aneurysms in the ascending aorta using a simultaneous multiplex protein detection system. Tissues were collected from 41 patients with ascending aortic aneurysms. A total of 31 patients had a bicuspid aortic valve (BAV), whereas 10 had a tricuspid aortic valve (TAV). Concave and convex aortic site samples were collected from all patients, whereas proximal and distal convexity samples were obtained from 19 patients with BAV and 7 patients with TAV. Simultaneous detection of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) was performed at each of the four aortic sites. MMP-2 levels were higher in the concave aortic sites than in the convex aortic sites. In contrast, MMP-8 levels were higher in the convex sites than in the concave sites, as were MMP-9 levels. In both BAV and TAV patients, TIMP-3 levels were higher in the concave sites than in the convex sites. However, TIMP-2 and TIMP-4 levels were significantly elevated in the sinotubular proximal aorta of BAV patients. Simultaneous detection of MMPs and TIMPs revealed different levels at different aortic sites in the same patient
    corecore