2,437 research outputs found

    Elementary excitations of the symmetric spin-orbital model: The XY limit

    Full text link
    The elementary excitations of the 1D, symmetric, spin-orbital model are investigated by studying two anisotropic versions of the model, the pure XY and the dimerized XXZ case, with analytical and numerical methods. While they preserve the symmetry between spin and orbital degrees of freedom, these models allow for a simple and transparent picture of the low--lying excitations: In the pure XY case, a phase separation takes place between two phases with free--fermion like, gapless excitations, while in the dimerized case, the low-energy effective Hamiltonian reduces to the 1D Ising model with gapped excitations. In both cases, all the elementary excitations involve simultaneous flips of the spin and orbital degrees of freedom, a clear indication of the breakdown of the traditional mean-field theory.Comment: Revtex, two figure

    N\'eel and Spin-Peierls ground states of two-dimensional SU(N) quantum antiferromagnets

    Get PDF
    The two-dimensional SU(N) quantum antiferromagnet, a generalization of the quantum Heisenberg model, is investigated by quantum Monte Carlo simulations. The ground state for N4N\le 4 is found to be of the N\'eel type with broken SU(N) symmetry, whereas it is of the Spin-Peierls type for N5N\ge 5 with broken lattice translational invariance. No intermediate spin-liquid phase was observed in contrast to previous numerical simulations on smaller lattices [Santoro et al., Phys. Rev. Lett. {\bf 83} 3065 (1999)].Comment: 4 pages, 4 figure

    Thermodynamics of the one-dimensional SU(4) symmetric spin-orbital model

    Full text link
    The ground state properties and the thermodynamics of the one-dimensional SU(4) symmetric spin system with orbital degeneracy are investigated using the quantum Monte Carlo loop algorithm. The spin-spin correlation functions exhibit a 4-site periodicity, and their low temperature behavior is controlled by two correlation lengths that diverge like the inverse temperature, while the entropy is linear in temperature and its slope is consistent with three gapless modes of velocity π/2\pi/2. The physical implications of these results are discussed.Comment: 4 pages, 4 figures, RevTe

    Double-exchange via degenerate orbitals

    Full text link
    We consider the double-exchange for systems in which doped electrons occupy degenerate orbitals, treating the realistic situation with double degenerate ege_g orbitals. We show that the orbital degeneracy leads in general to formation of anisotropic magnetic structures and that in particular, depending on the doping concentration, the layered magnetic structures of the A-type and chain-like structures of the C-type are stabilized. The phase-diagram that we obtain provides an explanation for the experimentally observed magnetic structures of some over-doped (electron-doped) manganites of the type Nd1x_{1-x}Srx_xMnO3_3, Pr1x_{1-x}Srx_xMnO3_3 and Sm1x_{1-x}Cax_xMnO3_3 with x>0.5x > 0.5.Comment: 4 pages, 1 figur

    Magnetic Phase Transition of the Perovskite-type Ti Oxides

    Full text link
    Properties and mechanism of the magnetic phase transition of the perovskite-type Ti oxides, which is driven by the Ti-O-Ti bond angle distortion, are studied theoretically by using the effective spin and pseudo-spin Hamiltonian with strong Coulomb repulsion. It is shown that the A-type antiferromagnetic(AFM(A)) to ferromagnetic(FM) phase transition occurs as the Ti-O-Ti bond angle is decreased. Through this phase transition, the orbital state is hardly changed so that the spin-exchange coupling along the c-axis changes nearly continuously from positive to negative and takes approximately zero at the phase boundary. The resultant strong two-dimensionality in the spin coupling causes a rapid suppression of the critical temperature as is observed experimentally.Comment: 9 pages, 5 figure

    Two-dimensional gapless spin liquids in frustrated SU(N) quantum magnets

    Full text link
    A class of the symmetrically frustrated SU(N) models is constructed for quantum magnets based on the generators of SU(N) group. The total Hamiltonian lacks SU(N) symmtry. A mean field theory in the quasi-particle representation is developed for spin liquid states. Numerical solutions in two dimension indicate that the ground states are gapless and the quasi-particles are Dirac particles. The mechanism may be helpful in exploring the spin liquid phases in the spin-1 bilinear-biquadratic model and the spin-orbital model in higher dimensions.Comment: 9 pages, 3 figures, to appear in New Journal of Physic

    Charge and orbital ordering in underdoped La1-xSrxMnO3

    Full text link
    We have explored spin, charge and orbitally ordered states in La1-xSrxMnO3 (0 < x < 1/2) using model Hartree-Fock calculations on d-p-type lattice models. At x=1/8, several charge and orbitally modulated states are found to be stable and almost degenerate in energy with a homogeneous ferromagnetic state. The present calculation indicates that a ferromagnetic state with a charge modulation along the c-axis which is consistent with the experiment by Yamada et al. might be responsible for the anomalous behavior around x = 1/8.Comment: 5 pages, 5 figure

    Magnetic and Orbital States and Their Phase Transition of the Perovskite-Type Ti Oxides: Strong Coupling Approach

    Full text link
    The properties and mechanism of the magnetic phase transition of the perovskite-type Ti oxides, which is driven by the Ti-O-Ti bond angle distortion, are studied theoretically by using the effective spin and pseudospin Hamiltonian with strong Coulomb repulsion. It is shown that the A-type antiferromagnetic (AFM(A)) to ferromagnetic (FM) phase transition occurs as the Ti-O-Ti bond angle is decreased. Through this phase transition, the orbital state changes only little whereas the spin-exchange coupling along the c-axis is expected to change from positive to negative nearly continuously and approaches zero at the phase boundary. The resultant strong two-dimensionality in the spin coupling causes rapid suppression of the critical temperature, as observed experimentally. It may induce large quantum fluctuations in this region.Comment: 13 pages, 15 figure

    Origin of G-type Antiferromagnetism and Orbital-Spin Structures in LaTiO3{\rm LaTiO}_3

    Full text link
    The possibility of the D3dD_{3d} distortion of TiO6{\rm TiO}_6 octahedra is examined theoretically in order to understand the origin of the G-type antiferromagnetism (AFM(G)) and experimentally observed puzzling properties of LaTiO3{\rm LaTiO}_3. By utilizing an effective spin and pseudospin Hamiltonian with the strong Coulomb repulsion, it is shown that AFM(G) state is stabilized through the lift of the t2gt_{2g}-orbital degeneracy accompanied by a tiny D3dD_{3d}-distortion . The estimated spin-exchange interaction is in agreement with that obtained by the neutron scattering. Moreover, the level-splitting energy due to the distortion can be considerably larger than the spin-orbit interaction even when the distortion becomes smaller than the detectable limit under the available experimental resolution. This suggests that the orbital momentum is fully quenched and the relativistic spin-orbit interaction is not effective in this system, in agreement with recent neutron-scattering experiment.Comment: 9 pages, 6 figure
    corecore