5,996 research outputs found

    Domain wall switching: optimizing the energy landscape

    Full text link
    It has recently been suggested that exchange spring media offer a way to increase media density without causing thermal instability (superparamagnetism), by using a hard and a soft layer coupled by exchange. Victora has suggested a figure of merit xi = 2 E_b/mu_0 m_s H_sw, the ratio of the energy barrier to that of a Stoner-Wohlfarth system with the same switching field, which is 1 for a Stoner-Wohlfarth (coherently switching) particle and 2 for an optimal two-layer composite medium. A number of theoretical approaches have been used for this problem (e.g., various numbers of coupled Stoner-Wohlfarth layers and continuum micromagnetics). In this paper we show that many of these approaches can be regarded as special cases or approximations to a variational formulation of the problem, in which the energy is minimized for fixed magnetization. The results can be easily visualized in terms of a plot of the energy as a function of magnetic moment m_z, in which both the switching field [the maximum slope of E(m_z)] and the stability (determined by the energy barrier E_b) are geometrically visible. In this formulation we can prove a rigorous limit on the figure of merit xi, which can be no higher than 4. We also show that a quadratic anistropy suggested by Suess et al comes very close to this limit.Comment: Acccepted for proceedings of Jan. 2007 MMM Meeting, paper BE-0

    Two-Particle Schroedinger Equation Animations of Wavepacket-Wavepacket Scattering (revised)

    Full text link
    A simple and explicit technique for the numerical solution of the two-particle, time-dependent Schr\"{o}dinger equation is assembled and tested. The technique can handle interparticle potentials that are arbitrary functions of the coordinates of each particle, arbitrary initial and boundary conditions, and multi-dimensional equations. Plots and animations are given here and on the World Wide Web of the scattering of two wavepackets in one dimension.Comment: 13 pages, 8 figures, animations at http://nacphy.physics.orst.edu/ComPhys/PACKETS

    Teaching systematic reflection to novice educational designers

    Get PDF
    How to help students in the field of instructional design and educational technology to develop their professional expertise through systematic reflection? This question is answered by describing the intended, implemented and attained curriculum of a third year university bachelor course on systematic reflection for design students. In this course, students learn four modes of reflection that originate in the work of the philosopher Kant. This approach is perceived as a different, yet productive addition to existing reflection approaches

    Comment on "Peierls Gap in Mesoscopic Ring Threated by a Magnetic Flux"

    Full text link
    In a recent letter, Yi et al. PRL 78, 3523 (1997), have considered the stability of a Charge Density Wave in a one-dimensional ring, in the presence of an Aharonov-Bohm flux. This comment shows that, in one dimension, the stability of the Charge Density Wave depends on the parity of the number of electrons in the ring. This effect is similar to the parity effect known for the persistent current in one-dimensional rings.Comment: Latex, 1 page, 2 figure

    Relativistic general-order coupled-cluster method for high-precision calculations: Application to Al+ atomic clock

    Get PDF
    We report the implementation of a general-order relativistic coupled-cluster method for performing high-precision calculations of atomic and molecular properties. As a first application, the static dipole polarizabilities of the ground and first excited states of Al+ have been determined to precisely estimate the uncertainty associated with the BBR shift of its clock frequency measurement. The obtained relative BBR shift is -3.66+-0.44 for the 3s^2 ^1S_0^0 --> 3s3p ^3P_0^0 transition in Al+ in contrast to the value obtained in the latest clock frequency measurement, -9+-3 [Phys. Rev. Lett. 104, 070802 (2010)]. The method developed in the present work can be employed to study a variety of subtle effects such as fundamental symmetry violations in atoms.Comment: 4 pages, 3 tables, submitte

    Investigations on a diffusion porometer with a fast humidity sensor.

    Get PDF
    A commercially available small humidity sensor with a very fast response was used in an unventilated diffusion porometer to measure leaf epidermal resistance. Measurements over calibrated dummy resistances showed that such a porometer had definite advantages in transpiration measurements in the field. In particular the waiting time before each measurement, necessary to obtain reproducible results with the commonly used LiCl sensor, could be shortened from 2 min to 15 s or even less. (Abstract retrieved from CAB Abstracts by CABI’s permission

    Conductance Fluctuations in a Metallic Wire Interrupted by a Tunnel Junction

    Full text link
    The conductance fluctuations of a metallic wire which is interrupted by a small tunnel junction has been explored experimentally. In this system, the bias voltage V, which drops almost completely inside the tunnel barrier, is used to probe the energy dependence of conductance fluctuations due to disorder in the wire. We find that the variance of the fluctuations is directly proportional to V. The experimental data are consistently described by a theoretical model with two phenomenological parameters: the phase breaking time at low temperatures and the diffusion coefficient.Comment: 9 pages RevTeX and 4 PS figures (accepted for publication in Physical Review Letters

    Measurement of the rate of water flow in plants.

    Get PDF
    A non-destructive thermo-electric method is described for the measurement of water flow in the stems of plants such as wheat and potatoes. The 2 temp. sensors are 10 or 20 mm apart. The miniature sensing is made by evaporation techniques. The sensor is suitable for laboratory as well as for field work. Flow rate in the stem can be monitored for several wk at relatively low cost. (Abstract retrieved from CAB Abstracts by CABI’s permission

    The electronic spectrum of CUONg(4) (Ng = Ne, Ar, Kr, Xe): New insights in the interaction of the CUO molecule with noble gas matrices

    Get PDF
    The electronic spectrum of the CUO molecule was investigated with the IHFSCC-SD (intermediate Hamiltonian Fock-space coupled cluster with singles and doubles) method and with TD-DFT (time-dependent density functional theory) employing the PBE and PBE0 exchange-correlation functionals. The importance of both spin-orbit coupling and correlation effects on the low-lying excited-states of this molecule are analyzed and discussed. Noble gas matrix effects on the energy ordering and vibrational frequencies of the lowest electronic states of the CUO molecule were investigated with density functional theory (DFT) and TD-DFT in a supermolecular as well as a frozen density embedding (FDE) subsystem approach. This data is used to test the suitability of the FDE approach to model the influence of different matrices on the vertical electronic transitions of this molecule. The most suitable potential was chosen to perform relativistic wave function theory in density functional theory calculations to study the vertical electronic spectra of the CUO and CUON
    • …
    corecore