4,305 research outputs found

    Efficient Model Learning for Human-Robot Collaborative Tasks

    Get PDF
    We present a framework for learning human user models from joint-action demonstrations that enables the robot to compute a robust policy for a collaborative task with a human. The learning takes place completely automatically, without any human intervention. First, we describe the clustering of demonstrated action sequences into different human types using an unsupervised learning algorithm. These demonstrated sequences are also used by the robot to learn a reward function that is representative for each type, through the employment of an inverse reinforcement learning algorithm. The learned model is then used as part of a Mixed Observability Markov Decision Process formulation, wherein the human type is a partially observable variable. With this framework, we can infer, either offline or online, the human type of a new user that was not included in the training set, and can compute a policy for the robot that will be aligned to the preference of this new user and will be robust to deviations of the human actions from prior demonstrations. Finally we validate the approach using data collected in human subject experiments, and conduct proof-of-concept demonstrations in which a person performs a collaborative task with a small industrial robot

    The endogenous subcellular localisations of the long chain fatty acid-activating enzymes ACSL3 and ACSL4 in sarcoma and breast cancer cells

    Get PDF
    Fatty acid uptake and metabolism are often dysregulated in cancer cells. Fatty acid activation is a critical step that allows these biomolecules to enter cellular metabolic pathways such as mitochondrial β-oxidation for ATP generation or the lipogenic routes that generate bioactive lipids such as the inositol phospholipids. Fatty acid activation by the addition of coenzyme A is catalysed by a family of enzymes called the acyl CoA synthetase ligases (ACSL). Furthermore, enhanced expression of particular ACSL isoforms, such as ACSL4, is a feature of some more aggressive cancers and may contribute to the oncogenic phenotype. This study focuses on ACSL3 and ACSL4, closely related structural homologues that preferentially activate palmitate and arachidonate fatty acids, respectively. In this study, immunohistochemical screening of multiple soft tissue tumour arrays revealed that ACSL3 and ACSL4 were highly, but differentially, expressed in a subset of leiomyosarcomas, fibrosarcomas and rhabdomyosarcomas, with consistent cytoplasmic and granular stainings of tumour cells. The intracellular localisations of endogenously expressed ACSL3 and ACSL4 were further investigated by detailed subcellular fractionation analyses of HT1080 fibrosarcoma and MCF-7 breast cancer cells. ACSL3 distribution closely overlapped with proteins involved in trafficking from the trans-Golgi network and endosomes. In contrast, the ACSL4 localisation pattern more closely followed that of calnexin which is an endoplasmic reticulum resident chaperone. Confocal immunofluorescence imaging of MCF-7 cells confirmed the intracellular localisations of both enzymes. These observations reveal new information regarding the compartmentation of fatty acid metabolism in cancer cells

    Force balance and membrane shedding at the Red Blood Cell surface

    Full text link
    During the aging of the red-blood cell, or under conditions of extreme echinocytosis, membrane is shed from the cell plasma membrane in the form of nano-vesicles. We propose that this process is the result of the self-adaptation of the membrane surface area to the elastic stress imposed by the spectrin cytoskeleton, via the local buckling of membrane under increasing cytoskeleton stiffness. This model introduces the concept of force balance as a regulatory process at the cell membrane, and quantitatively reproduces the rate of area loss in aging red-blood cells.Comment: 4 pages, 3 figure

    Coulomb Blockade of Tunneling Through a Double Quantum Dot

    Full text link
    We study the Coulomb blockade of tunneling through a double quantum dot. The temperature dependence of the linear conductance is strongly affected by the inter-dot tunneling. As the tunneling grows, a crossover from temperature-independent peak conductance to a power-law suppression of conductance at low temperatures is predicted. This suppression is a manifestation of the Anderson orthogonality catastrophe associated with the charge re-distribution between the dots, which accompanies the tunneling of an electron into a dot. We find analytically the shapes of the Coulomb blockade peaks in conductance as a function of gate voltage.Comment: 11 pages, revtex3.0 and multicols.sty, 4 figures uuencode

    Nuclear Magnetic Resonance and Hyperfine Structure

    Get PDF
    Contains research objectives and reports onAlfred P. Sloan Foundatio

    Even-odd parity effects in conductance and shot noise of metal-atomic wire-metal(superconducting) junctions

    Full text link
    In this paper, we study the conductance and shot noise in transport through a multi-site system in a two terminal configuration. The dependence of the transport on the number of atoms in the atomic wire is investigated using a tight-binding Hamiltonian and the nonequilibrium Green's function method. In addition to reproducing the even-odd behavior in the transmission probability at the Fermi energy or the linear response conductance in the normal-atomic wire-normal metallic(NAN) junctions, we find the following: (i) The shot noise is larger in the even-numbered atomic wire than in the odd-numbered wire. (ii) The Andreev conductance displays the same even-odd parity effects in the normal-atomic wire-superconducting(NAS) junctions. In general, the conductance is higher in the odd-numbered atomic wire than in the even-numbered wire. When the number of sites (NN) is odd and the atomic wire is mirror symmetric with respect to the center of the atomic wire, the conductance does not depend on the details of the hopping matrices in the atomic wire, but is solely determined by the coupling strength to the two leads. When NN is even, the conductance is sensitive to the values of the hopping matrices.Comment: 12 pages, 9 figure

    Coherent coupling of two quantum dots embedded in an Aharonov-Bohm ring

    Full text link
    We define two laterally gated small quantum dots (~ 15 electrons) in an Aharonov-Bohm geometry in which the coupling between the two dots can be broadly changed. For weakly coupled quantum dots we find Aharonov-Bohm oscillations. In an intermediate coupling regime we concentrate on the molecular states of the double dot and extract the magnetic field dependence of the coherent coupling.Comment: 6 pages, 4 figure

    Nuclear Magnetic Resonance

    Get PDF
    Contains research objectives and reports on five research projects

    The role of the equation of state and the space-time dimension in spherical collapse

    Full text link
    We study the spherically symmetric collapse of a fluid with non-vanishing radial pressure in higher dimensional space-time. We obtain the general exact solution in the closed form for the equation of state (Pr=γρP_r = \gamma \rho) which leads to the explicit construction of the root equation governing the nature (black hole versus naked singularity) of the central singularity. A remarkable feature of the root equation is its invariance for the three cases: (D+1,γ=1{D+1}, {\gamma = -1}), (D,γ=0{D}, {\gamma = 0}) and (D1,γ=1{D - 1}, {\gamma = 1}) where DD is the dimension of space-time. That is, for the ultimate end result of the collapse, DD-dimensional dust, D+1{D+1} - AdS (anti de Sitter)-like and D1{D-1} - dS-like are absolutely equivalent.Comment: 4 Pages, RevTeX, no figures, minor changes, new references added, Detailed version to follo

    Corrections to the universal behavior of the Coulomb-blockade peak splitting for quantum dots separated by a finite barrier

    Full text link
    Building upon earlier work on the relation between the dimensionless interdot channel conductance g and the fractional Coulomb-blockade peak splitting f for two electrostatically equivalent dots, we calculate the leading correction that results from an interdot tunneling barrier that is not a delta-function but, rather, has a finite height V and a nonzero width xi and can be approximated as parabolic near its peak. We develop a new treatment of the problem for g much less than 1 that starts from the single-particle eigenstates for the full coupled-dot system. The finiteness of the barrier leads to a small upward shift of the f-versus-g curve at small values of g. The shift is a consequence of the fact that the tunneling matrix elements vary exponentially with the energies of the states connected. Therefore, when g is small, it can pay to tunnel to intermediate states with single-particle energies above the barrier height V. The correction to the zero-width behavior does not affect agreement with recent experimental results but may be important in future experiments.Comment: Title changed from ``Non-universal...'' to ``Corrections to the universal...'' No other changes. 10 pages, 1 RevTeX file with 2 postscript figures included using eps
    corecore