1,104 research outputs found

    Few-body physics in effective field theory

    Full text link
    Effective Field Theory (EFT) provides a powerful framework that exploits a separation of scales in physical systems to perform systematically improvable, model-independent calculations. Particularly interesting are few-body systems with short-range interactions and large two-body scattering length. Such systems display remarkable universal features. In systems with more than two particles, a three-body force with limit cycle behavior is required for consistent renormalization already at leading order. We will review this EFT and some of its applications in the physics of cold atoms and nuclear physics. In particular, we will discuss the possibility of an infrared limit cycle in QCD. Recent extensions of the EFT approach to the four-body system and N-boson droplets in two spatial dimensions will also be addressed.Comment: 10 pages, 5 figures, Proceedings of the INT Workshop on "Nuclear Forces and the Quantum Many-Body Problem", Oct. 200

    Perturbative expansions from Monte Carlo simulations at weak coupling: Wilson loops and the static-quark self-energy

    Get PDF
    Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 343^4 to 16416^4) and couplings (from β9\beta \approx 9 to β60\beta \approx 60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.Comment: 36 pages, 15 figures, REVTEX documen

    Improved approach to the heavy-to-light form factors in the light-cone QCD sum

    Full text link
    A systematic analysis shows that the main uncertainties in the form factors are due to the twist-3 wave functions of the light mesons in the light-cone QCD sum rules. We propose an improved approach, in which the twist-3 wave functions doesn't make any contribution and therefore the possible pollution by them can be avoided, to re-examine BπB \to \pi semileptonic form factors. Also, a comparison between the previous and our results from the light-cone QCD sum rules is made. Our method will be beneficial to the precise extracting of Vub\mid{V_{ub}}\mid from the experimental data on the processes Bπν~B \to \pi \ell \widetilde{\nu_\ell}.Comment: New version to appear in PR

    Re-examination of the Perturbative Pion Form Factor with Sudakov Suppression

    Get PDF
    The perturbative pion form factor with Sudakov suppression is re-examined. Taking into account the multi-gluon exchange in the law Q2Q^2 regions, we suggest that the running coupling constant should be frozen at αs(t=)\alpha_s(t=\sqrt{}) and \sqrt{} is the average transverse momentum which can be determined by the pionic wave function. In addition, we correct the previous calculations about the Sudakov suppression factor which plays an important role in the perturbative predictions for the pion form factor.Comment: 11 pages, LaTex file, 2 figures as uu-encoded postscript file

    Perturbative QCD Analysis of the Nucleon's Pauli Form Factor F_2(Q^2)

    Full text link
    We perform a perturbative QCD analysis of the nucleon's Pauli form factor F2(Q2)F_2(Q^2) in the asymptotically large Q2Q^2 limit. We find that the leading contribution to F2(Q2)F_2(Q^2) has a 1/Q61/Q^6 power behavior, consistent with the well-known result in the literature. Its coefficient depends on the leading- and subleading-twist light-cone wave functions of the nucleon, the latter describing the quarks with one unit of orbital angular momentum. We also derive at the logarithmic accurary the asymptotic scaling F2(Q2)/F1(Q2)(log2Q2/Λ2)/Q2F_2(Q^2)/F_1(Q^2) \sim (\log^2 Q^2/\Lambda^2)/Q^2 which describes recent Jefferson Lab data well.Comment: 4 papes, 3 figures include

    Front Form Spinors in Weinberg-Soper Formalism and Melosh Transformations for any Spin

    Full text link
    Using the Weinberg-Soper formalism we construct the front form (j,0)(0,j)(j,0)\oplus(0,j) spinors. Explicit expressions for the generalised Melosh transformations up to spin two are obtained. The formalism, without explicitly invoking any wave equations, reproduces spin one half front-form results of Melosh, Lepage and Brodsky, and Dziembowski.Comment: 16 Pages, RevTex. We continue to receive reprint requests for this paper. So we now archive it her

    A Study of Gluon Propagator on Coarse Lattice

    Get PDF
    We study gluon propagator in Landau gauge with lattice QCD, where we use an improved lattice action. The calculation of gluon propagator is performed on lattices with the lattice spacing from 0.40 fm to 0.24 fm and with the lattice volume from (2.40fm)4(2.40 fm)^4 to (4.0fm)4(4.0 fm)^4. We try to fit our results by two different ways, in the first one we interpret the calculated gluon propagators as a function of the continuum momentum, while in the second we interpret the propagators as a function of the lattice momentum. In the both we use models which are the same in continuum limit. A qualitative agreement between two fittings is found.Comment: Revtex 14pages, 11 figure

    Large corrections to asymptotic FηcγF_{\eta_c \gamma} and FηbγF_{\eta_b \gamma} in the light-cone perturbative QCD

    Full text link
    The large-Q2Q^2 behavior of ηc\eta_c-γ\gamma and ηb\eta_b-γ\gamma transition form factors, Fηcγ(Q2)F_{\eta_c\gamma}(Q^2) and Fηbγ(Q2)F_{\eta_b\gamma}(Q^2) are analyzed in the framework of light-cone perturbative QCD with the heavy quark (cc and bb) mass effect, the parton's transverse momentum dependence and the higher helicity components in the light-cone wave function are respected. It is pointed out that the quark mass effect brings significant modifications to the asymptotic predictions of the transition form factors in a rather broad energy region, and this modification is much severer for Fηbγ(Q2)F_{\eta_b\gamma}(Q^2) than that for Fηcγ(Q2)F_{\eta_c\gamma}(Q^2) due to the bb-quark being heavier than the cc-quark. The parton's transverse momentum and the higher helicity components are another two factors which decrease the perturbative predictions. For the transition form factor Fηcγ(Q2)F_{\eta_c\gamma}(Q^2), they bring sizable corrections in the present experimentally accessible energy region (Q210GeV2Q^2 \leq 10 GeV^2). For the transition form factor Fηbγ(Q2)F_{\eta_b\gamma}(Q^2), the corrections coming from these two factors are negligible since the bb-quark mass is much larger than the parton's average transverse momentum. The coming e+ee^+ e^- collider (LEP2) will provide the opportunity to examine these theoretical predictions.Comment: 8 pages, RevTex, 5 PostScript figure

    Determination of quark-antiquark component of the photon wave function for u, d, s quarks

    Full text link
    Based on the data for the transitions pi0, eta, eta' -> gamma gamma^*(Q^2) and reactions of the e^+ e^- -annihilations, e^+ e^- -> rho0, omega, phi and e^+ e^--> hadrons at 1<E_{e^+e^-}<3.7 GeV, we determine the light-quark components of the photon wave function gamma^*(Q^2) -> q anti-q (q= u, d, s) for the region 0< Q^2 <1 (GeV/c)^2.Comment: 17 pages, some typos correcte

    Charged currents, color dipoles and xF_3 at small x

    Full text link
    We develop the light-cone color dipole description of highly asymmetric diffractive interactions of left-handed and right-handed electroweak bosons. We identify the origin and estimate the strength of the left-right asymmetry effect in terms of the light-cone wave functions. We report an evaluation of the small-x neutrino-nucleon DIS structure functions xF_3 and 2xF_1 and present comparison with experimental data.Comment: 11 pages, 3 figures, misprints correcte
    corecore