2,079 research outputs found
Effect of the orientational relaxation on the collective motion of patterns formed by self-propelled particles
We investigate the collective behavior of self-propelled particles (SPPs)
undergoing competitive processes of pattern formation and rotational relaxation
of their self-propulsion velocities. In full accordance with previous work, we
observe transitions between different steady states of the SPPs caused by the
intricate interplay among the involved effects of pattern formation,
orientational order, and coupling between the SPP density and orientation
fields. Based on rigorous analytical and numerical calculations, we prove that
the rate of the orientational relaxation of the SPP velocity field is the main
factor determining the steady states of the SPP system. Further, we determine
the boundaries between domains in the parameter plane that delineate
qualitatively different resting and moving states. In addition, we analytically
calculate the collective velocity of the SPPs and show that it
perfectly agrees with our numerical results. We quantitatively demonstrate that
does not vanish upon approaching the transition boundary between the
moving pattern and homogeneous steady states.Comment: 3 Figure
Modelling the evaporation of thin films of colloidal suspensions using Dynamical Density Functional Theory
Recent experiments have shown that various structures may be formed during
the evaporative dewetting of thin films of colloidal suspensions. Nano-particle
deposits of strongly branched `flower-like', labyrinthine and network
structures are observed. They are caused by the different transport processes
and the rich phase behaviour of the system. We develop a model for the system,
based on a dynamical density functional theory, which reproduces these
structures. The model is employed to determine the influences of the solvent
evaporation and of the diffusion of the colloidal particles and of the liquid
over the surface. Finally, we investigate the conditions needed for
`liquid-particle' phase separation to occur and discuss its effect on the
self-organised nano-structures
Depinning of three-dimensional drops from wettability defects
Substrate defects crucially influence the onset of sliding drop motion under
lateral driving. A finite force is necessary to overcome the pinning influence
even of microscale heterogeneities. The depinning dynamics of three-dimensional
drops is studied for hydrophilic and hydrophobic wettability defects using a
long-wave evolution equation for the film thickness profile. It is found that
the nature of the depinning transition explains the experimentally observed
stick-slip motion.Comment: 6 pages, 9 figures, submitted to ep
Bifurcation analysis of the behavior of partially wetting liquids on a rotating cylinder
We discuss the behavior of partially wetting liquids on a rotating cylinder
using a model that takes into account the effects of gravity, viscosity,
rotation, surface tension and wettability. Such a system can be considered as a
prototype for many other systems where the interplay of spatial heterogeneity
and a lateral driving force in the proximity of a first- or second-order phase
transition results in intricate behavior. So does a partially wetting drop on a
rotating cylinder undergo a depinning transition as the rotation speed is
increased, whereas for ideally wetting liquids the behavior \bfuwe{only changes
quantitatively. We analyze the bifurcations that occur when the rotation speed
is increased for several values of the equilibrium contact angle of the
partially wetting liquids. This allows us to discuss how the entire bifurcation
structure and the flow behavior it encodes changes with changing wettability.
We employ various numerical continuation techniques that allow us to track
stable/unstable steady and time-periodic film and drop thickness profiles. We
support our findings by time-dependent numerical simulations and asymptotic
analyses of steady and time-periodic profiles for large rotation numbers
Evaluating uniform manifold approximation and projection for dimension reduction and visualization of polinsar features
In this paper, the nonlinear dimension reduction algorithm Uniform Manifold Approximation and Projection (UMAP) is investigated to visualize information contained in high dimensional feature representations of Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) data. Based on polarimetric parameters, target decomposition methods and interferometric coherences a wide range of features is extracted that spans the high dimensional feature space. UMAP is applied to determine a representation of the data in 2D and 3D euclidean space, preserving local and global structures of the data and still suited for classification. The performance of UMAP in terms of generating expressive visualizations is evaluated on PolInSAR data acquired by the F-SAR sensor and compared to that of Principal Component Analysis (PCA), Laplacian Eigenmaps (LE) and t-distributed Stochastic Neighbor embedding (t-SNE). For this purpose, a visual analysis of 2D embeddings is performed. In addition, a quantitative analysis is provided for evaluating the preservation of information in low dimensional representations with respect to separability of different land cover classes. The results show that UMAP exceeds the capability of PCA and LE in these regards and is competitive with t-SNE
Dewetting of thin films on heterogeneous substrates: Pinning vs. coarsening
We study a model for a thin liquid film dewetting from a periodic
heterogeneous substrate (template). The amplitude and periodicity of a striped
template heterogeneity necessary to obtain a stable periodic stripe pattern,
i.e. pinning, are computed. This requires a stabilization of the longitudinal
and transversal modes driving the typical coarsening dynamics during dewetting
of a thin film on a homogeneous substrate. If the heterogeneity has a larger
spatial period than the critical dewetting mode, weak heterogeneities are
sufficient for pinning. A large region of coexistence between coarsening
dynamics and pinning is found.Comment: 4 pages, 4 figure
Dynamical density functional theory for the dewetting of evaporating thin films of nanoparticle suspensions exhibiting pattern formation
Recent experiments have shown that the striking structure formation in
dewetting films of evaporating colloidal nanoparticle suspensions occurs in an
ultrathin `postcursor' layer that is left behind by a mesoscopic dewetting
front. Various phase change and transport processes occur in the postcursor
layer, that may lead to nanoparticle deposits in the form of labyrinthine,
network or strongly branched `finger' structures. We develop a versatile
dynamical density functional theory to model this system which captures all
these structures and may be employed to investigate the influence of
evaporation/condensation, nanoparticle transport and solute transport in a
differentiated way. We highlight, in particular, the influence of the subtle
interplay of decomposition in the layer and contact line motion on the observed
particle-induced transverse instability of the dewetting front.Comment: 5 pages, 5 figure
Are We All in the Same Boat? The Role of Perceptual Distance in Organizational Health Interventions
The study investigates how agreement between leaders' and their team's perceptions influence intervention outcomes in a leadership-training intervention aimed at improving organizational learning. Agreement, i.e. perceptual distance was calculated for the organizational learning dimensions at baseline. Changes in the dimensions from pre-intervention to post-intervention were evaluated using polynomial regression analysis with response surface analysis. The general pattern of the results indicated that the organizational learning improved when leaders and their teams agreed on the level of organizational learning prior to the intervention. The improvement was greatest when the leader's and the team's perceptions at baseline were aligned and high rather than aligned and low. The least beneficial scenario was when the leader's perceptions were higher than the team's perceptions. These results give insights into the importance of comparing leaders' and their team's perceptions in intervention research. Polynomial regression analyses with response surface methodology allow three-dimensional examination of relationship between two predictor variables and an outcome. This contributes with knowledge on how combination of predictor variables may affect outcome and allows studies of potential non-linearity relating to the outcome. Future studies could use these methods in process evaluation of interventions
Damping by slow relaxing rare earth impurities in Ni80Fe20
Doping NiFe by heavy rare earth atoms alters the magnetic relaxation
properties of this material drastically. We show that this effect can be well
explained by the slow relaxing impurity mechanism. This process is a
consequence of the anisotropy of the on site exchange interaction between the
4f magnetic moments and the conduction band. As expected from this model the
magnitude of the damping effect scales with the anisotropy of the exchange
interaction and increases by an order of magnitude at low temperatures. In
addition our measurements allow us to determine the relaxation time of the 4f
electrons as a function of temperature
A lattice of microtraps for ultracold atoms based on patterned magnetic films
We have realized a two dimensional permanent magnetic lattice of
Ioffe-Pritchard microtraps for ultracold atoms. The lattice is formed by a
single 300 nm magnetized layer of FePt, patterned using optical lithography.
Our magnetic lattice consists of more than 15000 tightly confining microtraps
with a density of 1250 traps/mm. Simple analytical approximations for the
magnetic fields produced by the lattice are used to derive relevant trap
parameters. We load ultracold atoms into at least 30 lattice sites at a
distance of approximately 10 m from the film surface. The present result
is an important first step towards quantum information processing with neutral
atoms in magnetic lattice potentials.Comment: 7 pages, 7 figure
- …