28 research outputs found
LPMLE3 : a novel 1-D approach to study water flow in streambeds using heat as a tracer
We introduce LPMLE3, a new 1-D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1-D approaches it does not assume a semi-infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature-time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature-time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum-likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1-D methods
Inherited liver shunts in dogs elucidate pathways regulating embryonic development and clinical disorders of the portal vein
Congenital disorders of the hepatic portal vasculature are rare in man but occur frequently in certain dog breeds. In dogs, there are two main subtypes: intrahepatic portosystemic shunts, which are considered to stem from defective closure of the embryonic ductus venosus, and extrahepatic shunts, which connect the splanchnic vascular system with the vena cava or vena azygos. Both subtypes result in nearly complete bypass of the liver by the portal blood flow. In both subtypes the development of the smaller branches of the portal vein tree in the liver is impaired and terminal branches delivering portal blood to the liver lobules are often lacking. The clinical signs are due to poor liver growth, development, and function. Patency of the ductus venosus seems to be a digenic trait in Irish wolfhounds, whereas Cairn terriers with extrahepatic portosystemic shunts display a more complex inheritance. The genes involved in these disorders cannot be identified with the sporadic human cases, but in dogs, the genome-wide study of the extrahepatic form is at an advanced stage. The canine disease may lead to the identification of novel genes and pathways cooperating in growth and development of the hepatic portal vein tree. The same pathways likely regulate the development of the vascular system of regenerating livers during liver diseases such as hepatitis and cirrhosis. Therefore, the identification of these molecular pathways may provide a basis for future proregenerative intervention
Auditory information enhances post-sensory visual evidence during rapid multisensory decision-making
Despite recent progress in understanding multisensory decision-making, a conclusive mechanistic account of how the brain translates the relevant evidence into a decision is lacking. Specifically, it remains unclear whether perceptual improvements during rapid multisensory decisions are best explained by sensory (i.e., āEarlyā) processing benefits or post-sensory (i.e., āLateā) changes in decision dynamics. Here, we employ a well-established visual object categorisation task in which early sensory and post-sensory decision evidence can be dissociated using multivariate pattern analysis of the electroencephalogram (EEG). We capitalize on these distinct neural components to identify when and how complementary auditory information influences the encoding of decision-relevant visual evidence in a multisensory context. We show that it is primarily the post-sensory, rather than the early sensory, EEG component amplitudes that are being amplified during rapid audiovisual decision-making. Using a neurally informed drift diffusion model we demonstrate that a multisensory behavioral improvement in accuracy arises from an enhanced quality of the relevant decision evidence, as captured by the post-sensory EEG component, consistent with the emergence of multisensory evidence in higher-order brain areas
Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt
Lateral force microscopy in the wearless regime was used to study the friction behavior of a lipid monolayer on mica. In the monolayer, condensed domains with long-range orientational order of the lipid molecules were present. The domains revealed unexpectedly strong friction anisotropies and non-negligible friction asymmetries, The angular dependency of these effects correlated well with the tilt direction of the alkyl chains of the monolayer, as determined by electron diffraction and Brewster angle microscopy, The molecular tilt causing these frictional effects was less than 15 degrees, demonstrating that even small molecular tilts can make a major contribution to friction
Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt
Lateral force microscopy in the wearless regime was used to study the friction behavior of a lipid monolayer on mica. In the monolayer, condensed domains with long-range orientational order of the lipid molecules were present. The domains revealed unexpectedly strong friction anisotropies and non-negligible friction asymmetries. The angular dependency of these effects correlated well with the tilt direction of the alkyl chains of the monolayer, as determined by electron diffraction and Brewster angle microscopy. The molecular tilt causing these frictional effects was less than 15 degrees, demonstrating that even small molecular tilts can make a major contribution to friction
Economic Predictors of Differences in Interview Faking Between Countries: Economic Inequality Matters, Not the State of Economy
Many companies recruit employees from different parts of the globe, and faking behavior by potential employees is a ubiquitous phenomenon. It seems that applicants from some countries are more prone to faking compared to others, but the reasons for these differences are largely unexplored. This study relates country-level economic variables to faking behavior in hiring processes. In a cross-national study across 20 countries, participants (N = 3,839) reported their faking behavior in their last job interview. This study used the random response technique (RRT) to ensure participantsā anonymity and to foster honest answers regarding faking behavior. Results indicate that general economic indicators (gross domestic product per capita [GDP] and unemployment rate) show negligible correlations with faking across the countries, whereas economic inequality is positively related to the extent of applicant faking to a substantial extent. These findings imply that people are sensitive to inequality within countries and that inequality relates to faking, because inequality might actuate other psychological processes (e.g., envy) which in turn increase the probability for unethical behavior in many forms