1,730 research outputs found

    Inflation and dark energy arising from geometrical tachyons

    Full text link
    We study the motion of a BPS D3-brane in the NS5-brane ring background. The radion field becomes tachyonic in this geometrical set up. We investigate the potential of this geometrical tachyon in the cosmological scenario for inflation as well as dark energy. We evaluate the spectra of scalar and tensor perturbations generated during tachyon inflation and show that this model is compatible with recent observations of Cosmic Microwave Background (CMB) due to an extra freedom of the number of NS5-branes. It is not possible to explain the origin of both inflation and dark energy by using a single tachyon field, since the energy density at the potential minimum is not negligibly small because of the amplitude of scalar perturbations set by CMB anisotropies. However geometrical tachyon can account for dark energy when the number of NS5-branes is large, provided that inflation is realized by another scalar field.Comment: 11 pages, 8 figure

    Chaotic dynamics in preheating after inflation

    Full text link
    We study chaotic dynamics in preheating after inflation in which an inflaton ϕ\phi is coupled to another scalar field χ\chi through an interaction (1/2)g2ϕ2χ2(1/2)g^2\phi^2\chi^2. We first estimate the size of the quasi-homogeneous field χ\chi at the beginning of reheating for large-field inflaton potentials V(ϕ)=V0ϕnV(\phi)=V_0\phi^n by evaluating the amplitude of the χ\chi fluctuations on scales larger than the Hubble radius at the end of inflation. Parametric excitations of the field χ\chi during preheating can give rise to chaos between two dynamical scalar fields. For the quartic potential (n=4n=4, V0=λ/4V_0=\lambda/4) chaos actually occurs for g2/λ<O(10)g^2/\lambda <{\cal O}(10) in a linear regime before which the backreaction of created particles becomes important. This analysis is supported by several different criteria for the existence of chaos. For the quadratic potential (n=2n=2) the signature of chaos is not found by the time at which the backreaction begins to work, similar to the case of the quartic potential with g2/λ1g^2/\lambda \gg 1.Comment: 12 pages, 10 figures, Version to appear in Classical and Quantum Gravit

    Properties of singularities in (phantom) dark energy universe

    Full text link
    The properties of future singularities are investigated in the universe dominated by dark energy including the phantom-type fluid. We classify the finite-time singularities into four classes and explicitly present the models which give rise to these singularities by assuming the form of the equation of state of dark energy. We show the existence of a stable fixed point with an equation of state w<1w<-1 and numerically confirm that this is actually a late-time attractor in the phantom-dominated universe. We also construct a phantom dark energy scenario coupled to dark matter that reproduces singular behaviors of the Big Rip type for the energy density and the curvature of the universe. The effect of quantum corrections coming from conformal anomaly can be important when the curvature grows large, which typically moderates the finite-time singularities.Comment: 17 pages, 6 figures, references are added, version to appear in Physical Review

    Testing for double inflation with WMAP

    Get PDF
    With the WMAP data we can now begin to test realistic models of inflation involving multiple scalar fields. These naturally lead to correlated adiabatic and isocurvature (entropy) perturbations with a running spectral index. We present the first full (9 parameter) likelihood analysis of double inflation with WMAP data and find that despite the extra freedom, supersymmetric hybrid potentials are strongly constrained with less than 7% correlated isocurvature component allowed when standard priors are imposed on the cosomological parameters. As a result we also find that Akaike & Bayesian model selection criteria rather strongly prefer single-field inflation, just as equivalent analysis prefers a cosmological constant over dynamical dark energy in the late universe. It appears that simplicity is the best guide to our universe.Comment: 7 pages, 6 figure

    Power-law inflation with a nonminimally coupled scalar field

    Get PDF
    We consider the dynamics of power-law inflation with a nonminimally coupled scalar field ϕ\phi. It is well known that multiple scalar fields with exponential potentials V(ϕ)=V0exp(16π/pmpl2ϕ)V(\phi)=V_0 {\rm exp}(-\sqrt{16\pi/p m_{\rm pl}^2} \phi) lead to an inflationary solution even if the each scalar field is not capable to sustain inflation. In this paper, we show that inflation can be assisted even in the one-field case by the effect of nonminimal coupling. When ξ\xi is positive, since an effective potential which arises by a conformal transformation becomes flatter compared with the case of ξ=0\xi=0 for ϕ>0\phi>0, we have an inflationary solution even when the universe evolves as non-inflationary in the minimally coupled case. For the negative ξ\xi, the assisted inflation can take place when ϕ\phi evolves in the region of ϕ<0\phi<0 \.Comment: 12 pages, 6 figures, to appear in Phys. Rev.

    Reconstruction of general scalar-field dark energy models

    Full text link
    The reconstruction of scalar-field dark energy models is studied for a general Lagrangian density p(ϕ,X)p(\phi, X), where XX is a kinematic term of a scalar field ϕ\phi. We implement the coupling QQ between dark energy and dark matter and express reconstruction equations using two observables: the Hubble parameter HH and the matter density perturbation δm\delta_m. This allows us to determine the structure of corresponding theoretical Lagrangian together with the coupling QQ from observations. We apply our formula to several forms of Lagrangian and present concrete examples of reconstruction by using the recent Gold dataset of supernovae measurements. This analysis includes a generalized ghost condensate model as a way to cross a cosmological-constant boundary even for a single-field case.Comment: 8 pages, 2 figure

    New constraints on multi-field inflation with nonminimal coupling

    Get PDF
    We study the dynamics and perturbations during inflation and reheating in a multi-field model where a second scalar field χ\chi is nonminimally coupled to the scalar curvature (12ξRχ2(\frac12 \xi R\chi^2). When ξ\xi is positive, the usual inflationary prediction for large-scale anisotropies is hardly altered while the χ\chi fluctuation in sub-Hubble modes can be amplified during preheating for large ξ\xi. For negative values of ξ\xi, however, long-wave modes of the χ\chi fluctuation exhibit exponential increase during inflation, leading to the strong enhancement of super-Hubble metric perturbations even when ξ|\xi| is less than unity. This is because the effective χ\chi mass becomes negative during inflation. We constrain the strength of ξ\xi and the initial χ\chi by the amplitude of produced density perturbations. One way to avoid nonadiabatic growth of super-Hubble curvature perturbations is to stabilize the χ\chi mass through a coupling to the inflaton. Preheating may thus be necessary in these models to protect the stability of the inflationary phase.Comment: 20 pages, 8 figures, submitted to Physical Review

    Realizing Scale-invariant Density Perturbations in Low-energy Effective String Theory

    Full text link
    We discuss the realization of inflation and resulting cosmological perturbations in the low-energy effective string theory. In order to obtain nearly scale-invariant spectra of density perturbations and a suppressed tensor-to-scalar ratio, it is generally necessary that the dilaton field ϕ\phi is effectively decoupled from gravity together with the existence of a slowly varying dilaton potential. We also study the effect of second-order corrections to the tree-level action which are the sum of a Gauss-Bonnet term coupled to ϕ\phi and a kinetic term (ϕ)4(\nabla \phi)^4. We find that it is possible to realize observationally supported spectra of scalar and tensor perturbations provided that the correction is dominated by the (ϕ)4(\nabla \phi)^4 term even in the absence of the dilaton potential. When the Gauss-Bonnet term is dominant, tensor perturbations exhibit violent negative instabilities on small-scales about a de Sitter background in spite of the fact that scale-invariant scalar perturbations can be achieved.Comment: 13 pages; v2: minor corrections, refs. added, version to appear in PR

    Cosmological constraints from Gauss-Bonnet braneworld with large-field potentials

    Full text link
    We calculate the spectral index and tensor-to-scalar ratio for patch inflation defined by H2βq2VqH^2\approx \beta^2_q V^q and ϕ˙V/3H\dot{\phi}\approx -V'/3H, using the slow-roll expansion. The patch cosmology arisen from the Gauss-Bonnet braneworld consists of Gauss-Bonnet (GB), Randall-Sundrum (RS), and 4D general relativistic (GR) cosmological models. In this work, we choose large-field potentials of V=V0ϕpV=V_0\phi^p to compare with the observational data. Since second-order corrections are rather small in the slow-roll limit, the leading-order calculation is sufficient to compare with the data. Finally, we show that it is easier to discriminate between quadratic potential and quartic potential in the GB cosmological model rather than the GR or RS cosmological models.Comment: 13 pages, title changed, version to appear in JCA

    A new twist to preheating

    Full text link
    Metric perturbations typically strengthen field resonances during preheating. In contrast we present a model in which the super-Hubble field resonances are completely {\em suppressed} when metric perturbations are included. The model is the nonminimal Fakir-Unruh scenario which is exactly solvable in the long-wavelength limit when metric perturbations are included, but exhibits exponential growth of super-Hubble modes in their absence. This gravitationally enhanced integrability is exceptional, both for its rarity and for the power with which it illustrates the importance of including metric perturbations in consistent studies of preheating. We conjecture a no-go result - there exists no {\em single-field} model with growth of cosmologically-relevant metric perturbations during preheating.Comment: 6 pages, 3 figures, Version to appear in Physical Review
    corecore