474 research outputs found
Growth of CrSi2 Nanostructures Using CrCl2 Powder on Si Substrates
Chromium disilicide (CrSi2) nanostructures were grown by the exposure of Si (111) substrates to CrCl2 vapor in an argon gas flow at atmospheric pressure without using any metal catalyst. Dependence of the growth condition on the structural property was investigated. Hexagonal-shaped CrSi2 microrods were grown at 750 °C with 0.05 g of CrCl2. As the quantity of CrCl2 increased to 0.1 g, the bundle of CrSi2 nanowires with microrods and web-liked CrSi2 nanostructure with turning angles were grown at 750 °C and 700 °C, respectively. The preliminary discussion on the growth mechanism of CrSi2 micro- and nanostructures was carried out
Discovery of Brownleeite: a New Manganese Silicide Mineral in an Interplanetary Dust Particle
The Earth accretes approximately 40,000 tons of cosmic dust annually, originating mainly from the disintegration of comets and collisions among asteroids. This cosmic dust, also known as interplanetary dust particles (IDPs), is a subject of intense interest since it is made of the original building blocks of our Solar System. Although the specific parent bodies of IDPs are unknown, the anhydrous chondritic-porous IDPs (CP-IDPs) subset has been potentially linked to a cometary source. The CP-IDPs are extremely primitive materials based on their unequilibrated mineralogy, C-rich chemistry, and anomalous isotopic signatures. In particular, some CP-IDPs escaped the thermal, aqueous and impact shock processing that has modified or destroyed the original mineralogy of meteorites. Thus, the CP-IDPs represent some of the most primitive solar system materials available for laboratory study. Most CP-IDPs are comprised of minerals that are common on Earth. However, in the course of an examination of one of the CP-IDPs, we encountered three sub-micrometer sized grains of manganese silicide (MnSi), a phase that has heretofore not been found in nature. In the seminar, we would like to focus on IDP studies and this manganese silicide phase that has been approved as the first new mineral identified from a comet by the International Mineralogical Association (IMA) in 2008. The mineral is named in honour of Donald E. Brownlee, an American astronomer and a founder of the field of cosmic dust research who is the principal investigator of the NASA Stardust Mission that collected dust samples from Comet 81P/Wild-2 and returned them to Earth. Much of our current view and understanding of the early solar system would not exist without the pioneering work of professor Don Brownlee in the study of IDPs
Simple Synthesis of a Variety of Nano-structures Using Silicide Alloys with Ga Droplets
A variety of nano-structures, such as nanofibers, nanotubes, nanocapsules, nanoribbons and nanorods, were synthesized using silicide alloys with Ga droplets. It was found that the growth morphology and the structural property of the nanostructures significantly depended on the silicides seed materials. In addition, the amorphous SiO x nanofibers show strong ultraviolet and/or visible light emissions, and the PL spectra of the nanofibers depended on the seed materials. For some of the nanofiber syntheses, the formation of nanoflakes or nanoribbons of ÎČ-Ga 2 O 3 occurs, and a variety of growth morphologies for the ÎČ-Ga 2 O 3 nanostructures was obtained. The series of morphological and structural images are shown for a variety of nanostructures. The obtained SiO x nanofibers are expected to be materials for use in cheap, abundant and safe luminescent devices for visible light applications
Internal states of model isotropic granular packings. III. Elastic properties
In this third and final paper of a series, elastic properties of numerically
simulated isotropic packings of spherical beads assembled by different
procedures and subjected to a varying confining pressure P are investigated. In
addition P, which determines the stiffness of contacts by Hertz's law, elastic
moduli are chiefly sensitive to the coordination number, the possible values of
which are not necessarily correlated with the density. Comparisons of numerical
and experimental results for glass beads in the 10kPa-10MPa range reveal
similar differences between dry samples compacted by vibrations and lubricated
packings. The greater stiffness of the latter, in spite of their lower density,
can hence be attributed to a larger coordination number. Voigt and Reuss bounds
bracket bulk modulus B accurately, but simple estimation schemes fail for shear
modulus G, especially in poorly coordinated configurations under low P.
Tenuous, fragile networks respond differently to changes in load direction, as
compared to load intensity. The shear modulus, in poorly coordinated packings,
tends to vary proportionally to the degree of force indeterminacy per unit
volume. The elastic range extends to small strain intervals, in agreement with
experimental observations. The origins of nonelastic response are discussed. We
conclude that elastic moduli provide access to mechanically important
information about coordination numbers, which escape direct measurement
techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page
Heteroepitaxial growth of ferromagnetic MnSb(0001) films on Ge/Si(111) virtual substrates
Molecular beam epitaxial growth of ferromagnetic MnSb(0001) has been achieved on high quality, fully relaxed Ge(111)/Si(111) virtual substrates grown by reduced pressure chemical vapor deposition. The epilayers were characterized using reflection high energy electron diffraction, synchrotron hard X-ray diffraction, X-ray photoemission spectroscopy, and magnetometry. The surface reconstructions, magnetic properties, crystalline quality, and strain relaxation behavior of the MnSb films are similar to those of MnSb grown on GaAs(111). In contrast to GaAs substrates, segregation of substrate atoms through the MnSb film does not occur, and alternative polymorphs of MnSb are absent
Recommended from our members
In situ study of granular micromechanics in semi-solid carbon steels
The granular micromechanics of semi-solid steel at âŒ80% solid are studied by synchrotron radiography. A particulate soil mechanics approach to image analysis shows that deformation occurs by the translation and rotation of quasi-rigid grains under the action of contact forces, and that the changes in directional fabric and grainâgrain contacts occur by mechanisms similar to those of highly compacted soils including âlocked sandsâ. Grain-scale phenomena are then linked to the macroscopic displacement and strain fields and it is shown that shear-induced dilation is a fundamental response at both the grain and macro scales. Based on this, recommendations are made on future rheology experiments
A laboratory study of anisotropic geomaterials incorporating recent micromechanical understanding
This paper presents an experimental investigation revisiting the anisotropic stressâstrainâstrength behaviour of geomaterials in drained monotonic shear using hollow cylinder apparatus. The test programme has been designed to cover the effect of material anisotropy, preshearing, material density and intermediate principal stress on the behaviour of Leighton Buzzard sand. Experiments have also been performed on glass beads to understand the effect of particle shape. This paper explains phenomenological observations based on recently acquired understanding in micromechanics, with attention focused on strength anisotropy and deformation non-coaxiality, i.e. non-coincidence between the principal stress direction and the principal strain rate direction. The test results demonstrate that the effects of initial anisotropy produced during sample preparation are significant. The stressâstrainâstrength behaviour of the specimen shows strong dependence on the principal stress direction. Preloading history, material density and particle shape are also found to be influential. In particular, it was found that non-coaxiality is more significant in presheared specimens. The observations on the strength anisotropy and deformation non-coaxiality were explained based on the stressâforceâfabric relationship. It was observed that intermediate principal stress parameter b(b = (Ï2 â Ï3)/(Ï1 â Ï3)) has a significant effect on the non-coaxiality of sand. The lower the b-value, the higher the degree of non-coaxiality is induced. Visual inspection of shear band formed at the end of HCA testing has also been presented. The inclinations of the shear bands at different loading directions can be predicted well by taking account of the relative direction of the mobilized planes to the bedding plane
- âŠ