1,143 research outputs found
Crystal Symmetry, Electron-Phonon Coupling, and Superconducting Tendencies in LiPdB and LiPtB
After theoretical determination of the internal structural coordinates in
LiPdB, we calculate and analyze its electronic structure and obtain the
frequencies of the two phonons (40.6 meV for nearly pure Li mode, 13.0
meV for the strongly mixed Pd-Li mode). Pd can be ascribed a
configuration, but strong 4d character remains up to the Fermi level. Small
regions of flat bands occur at -70 meV at both the and X points.
Comparison of the Fermi level density of states to the linear specific heat
coefficient gives a dynamic mass enhancement of = 0.75. Rough Fermi
surface averages of the deformation potentials of individual Pd and Li
displacements are obtained. While is small, ~ 1.15 eV/\AA
is sizable, and a plausible case exists for its superconductivity at 8 K being
driven primarily by coupling to Pd vibrations. The larger d bandwidth in
LiPtB leads to important differences in the bands near the Fermi
surface. The effect on the band structure of spin-orbit coupling plus lack of
inversion is striking, and is much larger in the Pt compound.Comment: 8 pages and 8embedded figures, to be appeared in PR
Normal-state magnetotransport in La_{1.905}Ba_{0.095}CuO_{4} single crystals
The normal-state magnetotransport properties of La_{2-x}Ba_{x}CuO_{4} single
crystals with x=0.095 are measured; at this composition, a structural
transition to a low-temperature-tetragonal (LTT) phase occurs without
suppression of superconductivity. None of the measured properties (in-plane and
out-of-plane resistivity, magnetoresistance, and Hall coefficient) shows any
sudden change at the LTT phase transition, indicating that the occurrence of
the LTT phase does not necessarily cause an immediate change in the electronic
state such as the charge-stripe stabilization.Comment: 4 pages, 5 figure
Superconducting Properties of MgB2 Bulk Materials Prepared by High Pressure Sintering
High-density bulk materials of a newly discovered 40K intermetallic MgB2
superconductor were prepared by high pressure sintering. Superconducting
transition with the onset temperature of 39K was confirmed by both magnetic and
resistive measurements. Magnetization versus field (M-H) curve shows the
behavior of a typical Type II superconductor and the lower critical field
Hc1(0) estimated from M-H curve is 0.032T. The bulk sample shows good
connection between grains and critical current density Jc estimated from the
magnetization hysteresis using sample size was 2x104A/cm2 at 20K and 1T. Upper
critical field Hc2(0) determined by extrapolating the onset of resistive
transition and assuming a dirty limit is 18T.Comment: 3Pages PD
Effect of Pt doping on the critical temperature and upper critical field in YNi2-xPtxB2C (x=0-0.2)
We investigate the evolution of superconducting properties by doping
non-magnetic impurity in single crystals of YNi2-xPtxB2C (x=0-0.2). With
increasing Pt doping the critical temperature (Tc) monotonically decreases from
15.85K and saturates to a value ~13K for x>0.14. However, unlike conventional
s-wave superconductors, the upper critical field (HC2) along both
crystallographic directions a and c decreases with increasing Pt doping.
Specific heat measurements show that the density of states (N(EF)) at the Fermi
level (EF) and the Debye temperatures (Theta_D) in this series remains constant
within the error bars of our measurement. We explain our results based on the
increase in intraband scattering in the multiband superconductor YNi2B2C.Comment: ps file with figure
Thermo-magnetic history effects in the vortex state of YNi_2B_2C superconductor
The nature of five-quadrant magnetic isotherms for is different from that for
in a single crystal of YNi2B2C, pointing towards an anisotropic behaviour of
the flux line lattice (FLL). For, a well defined peak effect (PE) and second
magnetization peak (SMP) can be observed and the loop is open prior to the PE.
However, for, the loop is closed and one can observe only the PE. We have
investigated the history dependence of magnetization hysteresis data for by
recording minor hysteresis loops. The observed history dependence in across
different anomalous regions are rationalized on the basis of
su-perheating/supercooling of the vortex matter across the first-order-like
phase transition and possible additional effects due to annealing of the
disordered vortex bundles to the underlying equilibrium state.Comment: 4 pages, 4 figure
Charge-transfer induced surface conductivity for a copper based inorganic-organic hybrid
Inorganic-organic hybrids are receiving increasing attention as they offer the opportunity to combine the robust properties of inorganic materials with the versatility of organic compounds. We have studied the electric properties of an inorganic-organic hybrid with the chemical formula: CuCl4(C6H5CH2CH2NH3)2. This material is a ferromagnetic insulator that can easily be processed from solution. We show that the surface conductivity of the hybrid can be increased by five orders of magnitude by covering the surface with an organic electron donor. This constitutes a novel method to dope perovskite-based materials and study their charge transport properties.
- …
