55 research outputs found
Micro-computed tomography (Ό-CT) as a potential tool to assess the effect of dynamic coating routes on the formation of biomimetic apatite layers on 3D-plotted biodegradable polymeric scaffolds
This work studies the influence of dynamic
biomimetic coating procedures on the growth of bonelike
apatite layers at the surface of starch/polycaprolactone
(SPCL) scaffolds produced by a 3D-plotting technology.
These systems are newly proposed for bone Tissue Engineering
applications. After generating stable apatite layers
through a sodium silicate-based biomimetic methodology the
scaffolds were immersed in Simulated Body Fluid solutions
(SBF) under static, agitation and circulating flow perfusion
conditions, for different time periods. Besides the typical
characterization techniques, Micro-Computed Tomography
analysis (Ό-CT) was used to assess scaffold porosity and as a
new tool for mapping apatite content. 2D histomorphometric
analysis was performed and 3D virtual models were created
using specific softwares for CT reconstruction. By the proposed
biomimetic routes apatite layers were produced covering
the interior of the scaffolds, without compromising their
overall morphology and interconnectivity. Dynamic conditions
allowed for the production of thicker apatite layers as
consequence of higher mineralizing rates, when comparing
with static conditions. Ό-CT analysis clearly demonstrated
that flow perfusion was the most effective condition in order
to obtain well-defined apatite layers in the inner parts
of the scaffolds. Together with SEM, this technique was a useful complementary tool for assessing the apatite content
in a non-destructive way
- âŠ