3,227 research outputs found

    Superdiffusivity of asymmetric exclusion process in dimensions one and two

    Full text link
    We prove that the diffusion coefficient for the asymmetric exclusion process diverges at least as fast as t1/4t^{1/4} in dimension d=1d=1 and (logt)1/2(\log t)^{1/2} in d=2d=2. The method applies to nearest and non-nearest neighbor asymmetric exclusion processes

    A Note on ODEs from Mirror Symmetry

    Full text link
    We give close formulas for the counting functions of rational curves on complete intersection Calabi-Yau manifolds in terms of special solutions of generalized hypergeometric differential systems. For the one modulus cases we derive a differential equation for the Mirror map, which can be viewed as a generalization of the Schwarzian equation. We also derive a nonlinear seventh order differential equation which directly governs the instanton corrected Yukawa coupling.Comment: 24 pages using harvma

    Zooming in on local level statistics by supersymmetric extension of free probability

    Full text link
    We consider unitary ensembles of Hermitian NxN matrices H with a confining potential NV where V is analytic and uniformly convex. From work by Zinn-Justin, Collins, and Guionnet and Maida it is known that the large-N limit of the characteristic function for a finite-rank Fourier variable K is determined by the Voiculescu R-transform, a key object in free probability theory. Going beyond these results, we argue that the same holds true when the finite-rank operator K has the form that is required by the Wegner-Efetov supersymmetry method of integration over commuting and anti-commuting variables. This insight leads to a potent new technique for the study of local statistics, e.g., level correlations. We illustrate the new technique by demonstrating universality in a random matrix model of stochastic scattering.Comment: 38 pages, 3 figures, published version, minor changes in Section

    Parallel Mean Curvature Surfaces in Symmetric Spaces

    Full text link
    We present a reduction of codimension theorem for surfaces with parallel mean curvature in symmetric spaces

    The geometry of manifolds and the perception of space

    Full text link
    This essay discusses the development of key geometric ideas in the 19th century which led to the formulation of the concept of an abstract manifold (which was not necessarily tied to an ambient Euclidean space) by Hermann Weyl in 1913. This notion of manifold and the geometric ideas which could be formulated and utilized in such a setting (measuring a distance between points, curvature and other geometric concepts) was an essential ingredient in Einstein's gravitational theory of space-time from 1916 and has played important roles in numerous other theories of nature ever since.Comment: arXiv admin note: substantial text overlap with arXiv:1301.064
    corecore