3,227 research outputs found
Superdiffusivity of asymmetric exclusion process in dimensions one and two
We prove that the diffusion coefficient for the asymmetric exclusion process
diverges at least as fast as in dimension and
in . The method applies to nearest and non-nearest neighbor asymmetric
exclusion processes
A Note on ODEs from Mirror Symmetry
We give close formulas for the counting functions of rational curves on
complete intersection Calabi-Yau manifolds in terms of special solutions of
generalized hypergeometric differential systems. For the one modulus cases we
derive a differential equation for the Mirror map, which can be viewed as a
generalization of the Schwarzian equation. We also derive a nonlinear seventh
order differential equation which directly governs the instanton corrected
Yukawa coupling.Comment: 24 pages using harvma
Zooming in on local level statistics by supersymmetric extension of free probability
We consider unitary ensembles of Hermitian NxN matrices H with a confining
potential NV where V is analytic and uniformly convex. From work by
Zinn-Justin, Collins, and Guionnet and Maida it is known that the large-N limit
of the characteristic function for a finite-rank Fourier variable K is
determined by the Voiculescu R-transform, a key object in free probability
theory. Going beyond these results, we argue that the same holds true when the
finite-rank operator K has the form that is required by the Wegner-Efetov
supersymmetry method of integration over commuting and anti-commuting
variables. This insight leads to a potent new technique for the study of local
statistics, e.g., level correlations. We illustrate the new technique by
demonstrating universality in a random matrix model of stochastic scattering.Comment: 38 pages, 3 figures, published version, minor changes in Section
Parallel Mean Curvature Surfaces in Symmetric Spaces
We present a reduction of codimension theorem for surfaces with parallel mean
curvature in symmetric spaces
The geometry of manifolds and the perception of space
This essay discusses the development of key geometric ideas in the 19th
century which led to the formulation of the concept of an abstract manifold
(which was not necessarily tied to an ambient Euclidean space) by Hermann Weyl
in 1913. This notion of manifold and the geometric ideas which could be
formulated and utilized in such a setting (measuring a distance between points,
curvature and other geometric concepts) was an essential ingredient in
Einstein's gravitational theory of space-time from 1916 and has played
important roles in numerous other theories of nature ever since.Comment: arXiv admin note: substantial text overlap with arXiv:1301.064
- …