1,455 research outputs found

    On the steady states of the spherically symmetric Einstein-Vlasov system

    Full text link
    Using both numerical and analytical tools we study various features of static, spherically symmetric solutions of the Einstein-Vlasov system. In particular, we investigate the possible shapes of their mass-energy density and find that they can be multi-peaked, we give numerical evidence and a partial proof for the conjecture that the Buchdahl inequality supr>02m(r)/r<8/9\sup_{r > 0} 2 m(r)/r < 8/9, m(r)m(r) the quasi-local mass, holds for all such steady states--both isotropic {\em and} anisotropic--, and we give numerical evidence and a partial proof for the conjecture that for any given microscopic equation of state--both isotropic {\em and} anisotropic--the resulting one-parameter family of static solutions generates a spiral in the radius-mass diagram.Comment: 34 pages, 18 figures, LaTe

    Static cylindrically symmetric spacetimes

    Full text link
    We prove existence of static solutions to the cylindrically symmetric Einstein-Vlasov system, and we show that the matter cylinder has finite extension. The same results are also proved for a quite general class of equations of state for perfect fluids coupled to the Einstein equations, extending the class of equations of state considered in \cite{BL}. We also obtain this result for the Vlasov-Poisson system.Comment: Added acknowledgemen

    The Einstein-Vlasov sytem/Kinetic theory

    Get PDF
    The main purpose of this article is to guide the reader to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades where the main focus has been on nonrelativistic- and special relativistic physics, e.g. to model the dynamics of neutral gases, plasmas and Newtonian self-gravitating systems. In 1990 Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (e.g. fluid models). The first part of this paper gives an introduction to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental in order to get a good comprehension of kinetic theory in general relativity.Comment: 31 pages. This article has been submitted to Living Rev. Relativity (http://www.livingreviews.org

    On static shells and the Buchdahl inequality for the spherically symmetric Einstein-Vlasov system

    Full text link
    In a previous work \cite{An1} matter models such that the energy density ρ0,\rho\geq 0, and the radial- and tangential pressures p0p\geq 0 and q,q, satisfy p+qΩρ,Ω1,p+q\leq\Omega\rho, \Omega\geq 1, were considered in the context of Buchdahl's inequality. It was proved that static shell solutions of the spherically symmetric Einstein equations obey a Buchdahl type inequality whenever the support of the shell, [R0,R1],R0>0,[R_0,R_1], R_0>0, satisfies R1/R0<1/4.R_1/R_0<1/4. Moreover, given a sequence of solutions such that R1/R01,R_1/R_0\to 1, then the limit supremum of 2M/R12M/R_1 was shown to be bounded by ((2Ω+1)21)/(2Ω+1)2.((2\Omega+1)^2-1)/(2\Omega+1)^2. In this paper we show that the hypothesis that R1/R01,R_1/R_0\to 1, can be realized for Vlasov matter, by constructing a sequence of static shells of the spherically symmetric Einstein-Vlasov system with this property. We also prove that for this sequence not only the limit supremum of 2M/R12M/R_1 is bounded, but that the limit is ((2Ω+1)21)/(2Ω+1)2=8/9,((2\Omega+1)^2-1)/(2\Omega+1)^2=8/9, since Ω=1\Omega=1 for Vlasov matter. Thus, static shells of Vlasov matter can have 2M/R12M/R_1 arbitrary close to 8/9,8/9, which is interesting in view of \cite{AR2}, where numerical evidence is presented that 8/9 is an upper bound of 2M/R12M/R_1 of any static solution of the spherically symmetric Einstein-Vlasov system.Comment: 20 pages, Late

    Resonance production by neutrinos: I. J=3/2 Resonances

    Full text link
    The article contains general formulas for the production of J=3/2 resonances by neutrinos and antineutrinos. It specializes to the P_{33}(1232) resonance whose form factors are determined by theory and experiment and then are compared with experimental results at low and high energies. It is shown that the minimum in the low Q^2 region is a consequence of a combined effect from the vanishing of the vector form factors, the muon mass and Pauli blocking. Several improvements for the future investigations are suggested.Comment: 10 pages, LaTeX, misprints corrected, 1 reference adde

    Stable Models of Elliptical Galaxies

    Get PDF
    We construct stable axially symmetric models of elliptical galaxies. The particle density on phase space for these models depends monotonically on the particle energy and on the third component of the angular momentum. They are obtained as minimizers of suitably defined energy-Casimir functionals, and this implies their nonlinear stability. Since our analysis proceeds from a rigorous but purely mathematical point of view it should be interesting to determine if any of our models match observational data in astrophysics. The main purpose of these notes is to initiate some exchange of information between the astrophysics and the mathematics communities.Comment: 26 page

    Theorems on existence and global dynamics for the Einstein equations

    Get PDF
    This article is a guide to theorems on existence and global dynamics of solutions of the Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy problem, which is relatively well understood, is surveyed. Global results for solutions with various types of symmetry are discussed. A selection of results from Newtonian theory and special relativity that offer useful comparisons is presented. Treatments of global results in the case of small data and results on constructing spacetimes with prescribed singularity structure or late-time asymptotics are given. A conjectural picture of the asymptotic behaviour of general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics connected with the main theme are collected in a separate section.Comment: Submitted to Living Reviews in Relativity, major update of Living Rev. Rel. 5 (2002)

    On two weak CC Delta production models

    Full text link
    We perform a detail analysis of two models of neutrino CC Delta production on free nucleons. First model is a standard one based on nucleon-Delta transition current with several form-factors. Second model is a starting point for a construction of Marteau model with sophisticated analytical computations of nuclear effects. We conclude that both models lead to similar results.Comment: 9 pages, includes 9 figures, accepted for publication in J. Phys.

    Higher Twist, ξw\xi_w Scaling, and Effective LOPDFsLO PDFs for Lepton Scattering in the Few GeV Region

    Full text link
    We use a new scaling variable ξw\xi_w, and add low Q2Q^2 modifications to GRV98 leading order parton distribution functions such that they can be used to model electron, muon and neutrino inelastic scattering cross sections (and also photoproduction) at both very low and high energies.Comment: 6 pages, 3 figures. To be published in J. Phys. G (Conf. Proceedings) based on two talks by Arie Bodek at the NuFact02'02 conference, Imperial College, London, England, July 200

    Black holes vs. naked singularities formation in collapsing Einstein's clusters

    Full text link
    Non-static, spherically symmetric clusters of counter-rotating particles, of the type first introduced by Einstein, are analysed here. The initial data space can be parameterized in terms of three arbitrary functions, namely; initial density, velocity and angular momentum profiles. The final state of collapse, black hole or naked singularity, turns out to depend on the order of the first non-vanishing derivatives of such functions at the centre. The work extends recent results by Harada, Iguchi and Nakao.Comment: 13 pages, LaTeX format. To appear in Physical Review
    corecore