5,225 research outputs found
CLASSICAL SPLITTING OF FUNDAMENTAL STRINGS
We find exact solutions of the string equations of motion and constraints
describing the {\em classical}\ splitting of a string into two. We show that
for the same Cauchy data, the strings that split have {\bf smaller} action than
the string without splitting. This phenomenon is already present in flat
space-time. The mass, energy and momentum carried out by the strings are
computed. We show that the splitting solution describes a natural decay process
of one string of mass into two strings with a smaller total mass and some
kinetic energy. The standard non-splitting solution is contained as a
particular case. We also describe the splitting of a closed string in the
background of a singular gravitational plane wave, and show how the presence of
the strong gravitational field increases (and amplifies by an overall factor)
the negative difference between the action of the splitting and non-splitting
solutions.Comment: 27 pages, revtex
Canonical Melnikov theory for diffeomorphisms
We study perturbations of diffeomorphisms that have a saddle connection
between a pair of normally hyperbolic invariant manifolds. We develop a
first-order deformation calculus for invariant manifolds and show that a
generalized Melnikov function or Melnikov displacement can be written in a
canonical way. This function is defined to be a section of the normal bundle of
the saddle connection.
We show how our definition reproduces the classical methods of Poincar\'{e}
and Melnikov and specializes to methods previously used for exact symplectic
and volume-preserving maps. We use the method to detect the transverse
intersection of stable and unstable manifolds and relate this intersection to
the set of zeros of the Melnikov displacement.Comment: laTeX, 31 pages, 3 figure
Chains of Viscoelastic Spheres
Given a chain of viscoelastic spheres with fixed masses of the first and last
particles. We raise the question: How to chose the masses of the other
particles of the chain to assure maximal energy transfer? The results are
compared with a chain of particles for which a constant coefficient of
restitution is assumed. Our simple example shows that the assumption of
viscoelastic particle properties has not only important consequences for very
large systems (see [1]) but leads also to qualitative changes in small systems
as compared with particles interacting via a constant restitution coefficient.Comment: 11 pages, 6 figure
A generalized spherical version of the Blume-Emery-Griffits model with ferromagnetic and antiferromagnetic interactions
We have investigated analitycally the phase diagram of a generalized
spherical version of the Blume-Emery-Griffiths model that includes
ferromagnetic or antiferromagnetic spin interactions as well as quadrupole
interactions in zero and nonzero magnetic field. We show that in three
dimensions and zero magnetic field a regular paramagnetic-ferromagnetic (PM-FM)
or a paramagnetic-antiferromagnetic (PM-AFM) phase transition occurs whenever
the magnetic spin interactions dominate over the quadrupole interactions.
However, when spin and quadrupole interactions are important, there appears a
reentrant FM-PM or AFM-PM phase transition at low temperatures, in addition to
the regular PM-FM or PM-AFM phase transitions. On the other hand, in a nonzero
homogeneous external magnetic field , we find no evidence of a transition to
the state with spontaneous magnetization for FM interactions in three
dimensions. Nonethelesss, for AFM interactions we do get a scenario similar to
that described above for zero external magnetic field, except that the critical
temperatures are now functions of . We also find two critical field values,
, at which the reentrance phenomenon dissapears and
(), above which the PM-AFM transition temperature
vanishes.Comment: 21 pages, 6 figs. Title changed, abstract and introduction as well as
section IV were rewritten relaxing the emphasis on spin S=1 and Figs. 5 an 6
were improved in presentation. However, all the results remain valid.
Accepted for publication in Phys. Rev.
Solid helium at high pressure: A path-integral Monte Carlo simulation
Solid helium (3He and 4He) in the hcp and fcc phases has been studied by
path-integral Monte Carlo. Simulations were carried out in the
isothermal-isobaric (NPT) ensemble at pressures up to 52 GPa. This allows one
to study the temperature and pressure dependences of isotopic effects on the
crystal volume and vibrational energy in a wide parameter range. The obtained
equation of state at room temperature agrees with available experimental data.
The kinetic energy, E_k, of solid helium is found to be larger than the
vibrational potential energy, E_p. The ratio E_k/E_p amounts to about 1.4 at
low pressures, and decreases as the applied pressure is raised, converging to
1, as in a harmonic solid. Results of these simulations have been compared with
those yielded by previous path integral simulations in the NVT ensemble. The
validity range of earlier approximations is discussed.Comment: 7 pages, 5 figure
Higgs mediated Double Flavor Violating top decays in Effective Theories
The possibility of detecting double flavor violating top quark transitions at
future colliders is explored in a model-independent manner using the effective
Lagrangian approach through the () decays. A
Yukawa sector that contemplates invariants of up to
dimension six is proposed and used to derive the most general flavor violating
and CP violating and vertices of renormalizable type.
Low-energy data, on high precision measurements, and experimental limits are
used to constraint the and vertices and then used to
predict the branching ratios for the decays. It is found
that this branching ratios may be of the order of , for a
relative light Higgs boson with mass lower than , which could be more
important than those typical values found in theories beyond the standard model
for the rare top quark decays () or . %% LHC experiments, by using a total integrated luminosity of of data, will be able to rule out, at 95% C.L., DFV top quark
decays up to a Higgs mass of 155 GeV/ or discover such a process up to a
Higgs mass of 147 GeV/.Comment: 24 pages, 11 figure
The VLT-FLAMES Tarantula Survey X: Evidence for a bimodal distribution of rotational velocities for the single early B-type stars
Aims: Projected rotational velocities (\vsini) have been estimated for 334
targets in the VLT-FLAMES Tarantula survey that do not manifest significant
radial velocity variations and are not supergiants. They have spectral types
from approximately O9.5 to B3. The estimates have been analysed to infer the
underlying rotational velocity distribution, which is critical for
understanding the evolution of massive stars.
Methods: Projected rotational velocities were deduced from the Fourier
transforms of spectral lines, with upper limits also being obtained from
profile fitting. For the narrower lined stars, metal and non-diffuse helium
lines were adopted, and for the broader lined stars, both non-diffuse and
diffuse helium lines; the estimates obtained using the different sets of lines
are in good agreement. The uncertainty in the mean estimates is typically 4%
for most targets. The iterative deconvolution procedure of Lucy has been used
to deduce the probability density distribution of the rotational velocities.
Results: Projected rotational velocities range up to approximately 450 \kms
and show a bi-modal structure. This is also present in the inferred rotational
velocity distribution with 25% of the sample having \ve100\,\kms
and the high velocity component having \ve\,\kms. There is no
evidence from the spatial and radial velocity distributions of the two
components that they represent either field and cluster populations or
different episodes of star formation. Be-type stars have also been identified.
Conclusions: The bi-modal rotational velocity distribution in our sample
resembles that found for late-B and early-A type stars. While magnetic braking
appears to be a possible mechanism for producing the low-velocity component, we
can not rule out alternative explanations.Comment: to be publisged in A&
One-loop effects of extra dimensions on the WW\gamma and WWZ vertices
The one-loop contribution of the excited Kaluza-Klein (KK) modes of the
gauge group on the off-shell and vertices is
calculated in the context of a pure Yang-Mills theory in five dimensions and
its phenomenological implications discussed. The use of a gauge-fixing
procedure for the excited KK modes that is covariant under the standard gauge
transformations of the group is stressed. A gauge-fixing term and the
Faddeev-Popov ghost sector for the KK gauge modes that are separately invariant
under the standard gauge transformations of are presented. It is
shown that the one-loop contributions of the KK modes to the off-shell
and vertices are free of ultraviolet divergences and
well-behaved at high energies. It is found that for a size of the fifth
dimension of , the one-loop contribution of the KK modes to
these vertices is about one order of magnitude lower than the corresponding
standard model radiative correction. This contribution is similar to the one
estimated for new gauge bosons contributions in other contexts. Tree-level
effects on these vertices induced by operators of higher canonical dimension
are also investigated. It is found that these effects are lower than those
generated at the one-loop order by the KK gauge modes.Comment: 19 pages, 9 figures. Some typos were correcte
- …