761 research outputs found
Raman and Infra-red properties and layer dependence of the phonon dispersions in multi-layered graphene
The symmetry group analysis is applied to classify the phonon modes of
-stacked graphene layers (NSGL's) with AB- and AA-stacking, particularly
their infra-red and Raman properties. The dispersions of various phonon modes
are calculated in a multi-layer vibrational model, which is generalized from
the lattice vibrational potentials of graphene to including the inter-layer
interactions in NSGL's. The experimentally reported red shift phenomena in the
layer number dependence of the intra-layer optical C-C stretching mode
frequencies are interpreted. An interesting low frequency inter-layer optical
mode is revealed to be Raman or Infra-red active in even or odd NSGL's
respectively. Its frequency shift is sensitive to the layer number and
saturated at about 10 layers.Comment: enlarged versio
Thermo-statistical description of gas mixtures from space partitions
The new mathematical framework based on the free energy of pure classical
fluids presented in [R. D. Rohrmann, Physica A 347, 221 (2005)] is extended to
multi-component systems to determine thermodynamic and structural properties of
chemically complex fluids. Presently, the theory focuses on -dimensional
mixtures in the low-density limit (packing factor ). The formalism
combines the free-energy minimization technique with space partitions that
assign an available volume to each particle. is related to the
closeness of the nearest neighbor and provides an useful tool to evaluate the
perturbations experimented by particles in a fluid. The theory shows a close
relationship between statistical geometry and statistical mechanics. New,
unconventional thermodynamic variables and mathematical identities are derived
as a result of the space division. Thermodynamic potentials ,
conjugate variable of the populations of particles class with the
nearest neighbors of class are defined and their relationships with the
usual chemical potentials are established. Systems of hard spheres are
treated as illustrative examples and their thermodynamics functions are derived
analytically. The low-density expressions obtained agree nicely with those of
scaled-particle theory and Percus-Yevick approximation. Several pair
distribution functions are introduced and evaluated. Analytical expressions are
also presented for hard spheres with attractive forces due to K\^ac-tails and
square-well potentials. Finally, we derive general chemical equilibrium
conditions.Comment: 14 pages, 8 figures. Accepted for publication in Physical Review
The nonlinear time-dependent response of isotactic polypropylene
Tensile creep tests, tensile relaxation tests and a tensile test with a
constant rate of strain are performed on injection-molded isotactic
polypropylene at room temperature in the vicinity of the yield point. A
constitutive model is derived for the time-dependent behavior of
semi-crystalline polymers. A polymer is treated as an equivalent network of
chains bridged by permanent junctions. The network is modelled as an ensemble
of passive meso-regions (with affine nodes) and active meso-domains (where
junctions slip with respect to their positions in the bulk medium with various
rates). The distribution of activation energies for sliding in active
meso-regions is described by a random energy model. Adjustable parameters in
the stress--strain relations are found by fitting experimental data. It is
demonstrated that the concentration of active meso-domains monotonically grows
with strain, whereas the average potential energy for sliding of junctions and
the standard deviation of activation energies suffer substantial drops at the
yield point. With reference to the concept of dual population of crystalline
lamellae, these changes in material parameters are attributed to transition
from breakage of subsidiary (thin) lamellae in the sub-yield region to
fragmentation of primary (thick) lamellae in the post-yield region of
deformation.Comment: 29 pages, 12 figure
On the Quantum Theory of Molecules
Transition state theory was introduced in the 1930s to account for chemical
reactions. Central to this theory is the idea of a potential energy surface
(PES). It was assumed that such a surface could be constructed using
eigensolutions of the Schr\"{o}dinger equation for the molecular (Coulomb)
Hamiltonian but at that time such calculations were not possible. Nowadays
quantum mechanical ab-initio electronic structure calculations are routine and
from their results PESs can be constructed which are believed to approximate
those assumed derivable from the eigensolutions. It is argued here that this
belief is unfounded. It is suggested that the potential energy surface
construction is more appropriately regarded as a legitimate and effective
modification of quantum mechanics for chemical purpose
Ligand-Receptor Interactions
The formation and dissociation of specific noncovalent interactions between a
variety of macromolecules play a crucial role in the function of biological
systems. During the last few years, three main lines of research led to a
dramatic improvement of our understanding of these important phenomena. First,
combination of genetic engineering and X ray cristallography made available a
simultaneous knowledg of the precise structure and affinity of series or
related ligand-receptor systems differing by a few well-defined atoms. Second,
improvement of computer power and simulation techniques allowed extended
exploration of the interaction of realistic macromolecules. Third, simultaneous
development of a variety of techniques based on atomic force microscopy,
hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or
flexible transducers yielded direct experimental information of the behavior of
single ligand receptor bonds. At the same time, investigation of well defined
cellular models raised the interest of biologists to the kinetic and mechanical
properties of cell membrane receptors. The aim of this review is to give a
description of these advances that benefitted from a largely multidisciplinar
approach
Statistical Mechanics of Glass Formation in Molecular Liquids with OTP as an Example
We extend our statistical mechanical theory of the glass transition from
examples consisting of point particles to molecular liquids with internal
degrees of freedom. As before, the fundamental assertion is that super-cooled
liquids are ergodic, although becoming very viscous at lower temperatures, and
are therefore describable in principle by statistical mechanics. The theory is
based on analyzing the local neighborhoods of each molecule, and a statistical
mechanical weight is assigned to every possible local organization. This
results in an approximate theory that is in very good agreement with
simulations regarding both thermodynamical and dynamical properties
Decline and recovery of total column ozone using a multimodel time series analysis
Simulations of 15 coupled chemistry climate models, for the period 1960–2100, are presented. The models include a detailed stratosphere, as well as including a realistic representation of the tropospheric climate. The simulations assume a consistent set of changing greenhouse gas concentrations, as well as temporally varying chlorofluorocarbon concentrations in accordance with observations for the past and expectations for the future. The ozone results are analyzed using a nonparametric additive statistical model. Comparisons are made with observations for the recent past, and the recovery of ozone,
indicated by a return to 1960 and 1980 values, is investigated as a function of latitude. Although chlorine amounts are simulated to return to 1980 values by about 2050, with only weak latitudinal variations, column ozone amounts recover at different rates due to the influence of greenhouse gas changes. In the tropics, simulated peak ozone amounts occur by about 2050 and thereafter total ozone column declines. Consequently, simulated ozone does not recover to values which existed prior to the early 1980s. The results also show a distinct hemispheric asymmetry, with recovery to 1980 values in the Northern Hemisphere extratropics ahead of the chlorine return by about 20 years. In the Southern Hemisphere midlatitudes, ozone is simulated to return to 1980 levels only 10 years ahead of chlorine. In the Antarctic, annually averaged ozone recovers at about the same rate as chlorine in high latitudes and hence does not return to 1960s values until the last decade of the simulations
The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century
Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an "ensemble of opportunity" of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21st century, up-to and after the time when ozone concentrations return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels
Multimodel assessment of the factors driving stratospheric ozone evolution over the 21st century
The evolution of stratospheric ozone from 1960 to 2100 is examined in simulations from 14 chemistry‐climate models, driven by prescribed levels of halogens and greenhouse gases. There is general agreement among the models that total column ozone reached a minimum around year 2000 at all latitudes, projected to be followed by an increase over the first half of the 21st century. In the second half of the 21st century, ozone is projected to continue increasing, level off, or even decrease depending on the latitude. Separation into partial columns above and below 20 hPa reveals that these latitudinal differences are almost completely caused by differences in the model projections of ozone in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21st century and is projected to return to 1960 levels well before the end of the century, although there is a spread among models in the dates that ozone returns to specific historical values. We find decreasing halogens and declining upper atmospheric temperatures, driven by increasing greenhouse gases, contribute almost equally to increases in upper stratospheric ozone. In the tropical lower stratosphere, an increase in upwelling causes a steady decrease in ozone through the 21st century, and total column ozone does not return to 1960 levels in most of
the models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21st century, returning to 1960 levels well before the end of the century in most models
Ab initio simulations of the kinetic properties of the hydrogen monomer on graphene
The understanding of the kinetic properties of hydrogen (isotopes) adatoms on
graphene is important in many fields. The kinetic properties of
hydrogen-isotope (H, D and T) monomers were simulated using a composite method
consisting of density functional theory, density functional perturbation theory
and harmonic transition state theory. The kinetic changes of the magnetic
property and the aromatic bond of the hydrogenated graphene during the
desorption and diffusion of the hydrogen monomer was discussed. The vibrational
zero-point energy corrections in the activation energies were found to be
significant, ranging from 0.072 to 0.205 eV. The results obtained from
quantum-mechanically modified harmonic transition state theory were compared
with the ones obtained from classical-limit harmonic transition state theory
over a wide temperature range. The phonon spectra of hydrogenated graphene were
used to closely explain the (reversed) isotope effects in the prefactor,
activation energy and jump frequency of the hydrogen monomer. The kinetic
properties of the hydrogen-isotope monomers were simulated under conditions of
annealing for 10 minutes and of heating at a constant rate (1.0 K/s). The
isotope effect was observed; that is, a hydrogen monomer of lower mass is
desorbed and diffuses more easily (with lower activation energies). The results
presented herein are very similar to other reported experimental observations.
This study of the kinetic properties of the hydrogen monomer and many other
involved implicit mechanisms provides a better understanding of the interaction
between hydrogen and graphene.Comment: Accepted by J. Phys. Chem.
- …