32 research outputs found

    Four ultra-short period eclipsing M-dwarf binaries in the WFCAM Transit Survey

    Full text link
    We report on the discovery of four ultra-short period (P<0.18 days) eclipsing M-dwarf binaries in the WFCAM Transit Survey. Their orbital periods are significantly shorter than of any other known main-sequence binary system, and are all significantly below the sharp period cut-off at P~0.22 days as seen in binaries of earlier type stars. The shortest-period binary consists of two M4 type stars in a P=0.112 day orbit. The binaries are discovered as part of an extensive search for short-period eclipsing systems in over 260,000 stellar lightcurves, including over 10,000 M-dwarfs down to J=18 mag, yielding 25 binaries with P<0.23 days. In a popular paradigm, the evolution of short period binaries of cool main-sequence stars is driven by loss of angular momentum through magnetised winds. In this scheme, the observed P~0.22 day period cut-off is explained as being due to timescales that are too long for lower-mass binaries to decay into tighter orbits. Our discovery of low-mass binaries with significantly shorter orbits implies that either these timescales have been overestimated for M-dwarfs, e.g. due to a higher effective magnetic activity, or that the mechanism for forming these tight M-dwarf binaries is different from that of earlier type main-sequence stars.Comment: 22 pages, 17 figures, 3 tables Accepted for publication in MNRA

    The first planet detected in the WTS: an inflated hot-Jupiter in a 3.35 d orbit around a late F star [Erratum]

    Get PDF
    We report the discovery of WTS-1b, the first extrasolar planet found by the WFCAM Transit Survey, which began observations at the 3.8-m United Kingdom Infrared Telescope (UKIRT) in August 2007. Light curves comprising almost 1200 epochs with a photometric precision of better than 1 per cent to J ~ 16 were constructed for ~60000 stars and searched for periodic transit signals. For one of the most promising transiting candidates, high-resolution spectra taken at the Hobby-Eberly Telescope (HET) allowed us to estimate the spectroscopic parameters of the host star, a late-F main sequence dwarf (V=16.13) with possibly slightly subsolar metallicity, and to measure its radial velocity variations. The combined analysis of the light curves and spectroscopic data resulted in an orbital period of the substellar companion of 3.35 days, a planetary mass of 4.01 +- 0.35 Mj and a planetary radius of 1.49+0.16-0.18 Rj. WTS-1b has one of the largest radius anomalies among the known hot Jupiters in the mass range 3-5 Mj. The high irradiation from the host star ranks the planet in the pM class.Comment: 16 pages, 10 figure

    Vision and visual history in elite-/near-elite level cricketers and rugby-league players

    Get PDF
    Background: The importance of optimal and/or superior vision for participation in high-level sport remains the subject of considerable clinical research interest. Here we examine the vision and visual history of elite/near-elite cricketers and rugby-league players. Methods: Stereoacuity (TNO), colour vision, and distance (with/without pinhole) and near visual acuity (VA) were measured in two cricket squads (elite/international-level, female, n=16; near-elite, male, n=23) and one professional rugby-league squad (male, n=20). Refractive error was determined, and details of any correction worn and visual history were recorded. Results: Overall, 63% had their last eye-examination within 2 years. However, some had not had an eye examination for 5 years, or had never had one (near-elite-cricketers: 30%; rugby-league players: 15%; elite-cricketers: 6%). Comparing our results for all participants to published data for young, optimally-corrected, non-sporting adults, distance VA was ~1 line of letters worse than expected. Adopting α=0.01, the deficit in distance-VA deficit was significant, but only for elite-cricketers (p0.02 for all comparisons). On average, stereoacuity was better than in young adults, but only in elite-cricketers (p<0.001; p=0.03, near-elite-cricketers; p=0.47, rugby-league -players). On-field visual issues were present in 27% of participants, and mostly (in 75% of cases) comprised uncorrected ametropia. Some cricketers (near-elite: 17.4%; elite: 38%) wore refractive correction during play but no rugby-league player did. Some individuals with prescribed correction choose not to wear it when playing. Conclusion: Aside from near stereoacuity in elite-cricketers, these basic visual abilities were not better than equivalent, published data for optimally-corrected adults. 20-25% exhibited sub-optimal vision, suggesting that the clearest possible vision might not be critical for participation at the highest levels in the sports of cricket or rugby-league. Although vision could be improved in a sizeable proportion of our sample, the impact of correcting these, mostly subtle, refractive anomalies on playing performance is unknown

    The first planet detected in the WTS: an inflated hot Jupiter in a 3.35 d orbit around a late F star

    Get PDF
    We report the discovery of WTS-1b, the first extrasolar planet found by the WFCAM Transit Survey, which began observations at the 3.8-m United Kingdom Infrared Telescope (UKIRT) in 2007 August. Light curves comprising almost 1200 epochs with a photometric precision of better than 1 per cent to J ˜ 16 were constructed for ˜60 000 stars and searched for periodic transit signals. For one of the most promising transiting candidates, high-resolution spectra taken at the Hobby-Eberly Telescope (HET) allowed us to estimate the spectroscopic parameters of the host star, a late-F main-sequence dwarf (V = 16.13) with possibly slightly subsolar metallicity, and to measure its radial velocity variations. The combined analysis of the light curves and spectroscopic data resulted in an orbital period of the substellar companion of 3.35 d, a planetary mass of 4.01 ± 0.35 MJ and a planetary radius of 1.49-0.18+0.16 RJ. WTS-1b has one of the largest radius anomalies among the known hot Jupiters in the mass range 3-5 MJ. The high irradiation from the host star ranks the planet in the pM class

    Three-dimensional object shape from shading and contour disparities

    Full text link

    The influence of object orientation and shading on pictorial relief of Lambertian surfaces

    Full text link

    Shape-from-shading for matte and glossy objects

    Full text link
    We wanted to find out whether the presence of specular highlights on the otherwise matte objects would make a difference to the perceived surface relief. Six different. globally convex objects were displayed on a computer screen. The depicted objects were either matte or glossy and were illuminated from one of the two different directions. Shape-from-shading was evaluated with two different paradigms. In Experiment I observers were asked to set a number of local surface attitude probes such that the probes looked as if they were tangent to the objects' surfaces. In Experiment 2, observers were instructed to make traces of the contours of the depicted objects in the horizontal and vertical planes. Although the two tasks target different aspects of the perceived surface, they give essentially similar results here. In both tasks we found differences that were induced by changing the illumination direction. Surprisingly, no systematic difference was found between the results for matte and glossy objects. We must, therefore, conclude that there is no evidence from the current study that glossiness influences shape perception although to the observer matte and glossy objects look quite different. (c) 2005 Elsevier B.V. All rights reserved.</p

    Vergence effects on the perception of motion-in-depth

    Full text link
    When the eyes follow a target that is moving directly towards the head they make a vergence eye movement. Accurate perception of the target's motion requires adequate compensation for the movements of the eyes. The experiments in this paper address the issue of how well the visual system compensates for vergence eye movements when viewing moving targets. We show that there are small but consistent biases across observers: When the eyes follow a target that is moving in depth, it is typically perceived as slower than when the eyes are kept stationary. We also analysed the eye movements that were made by observers. We found that there are considerable differences between observers and between trials, but we did not find evidence that the gains and phase lags of the eye movements were related to psychophysical performance.</p
    corecore