3,177 research outputs found

    Response to sub-threshold stimulus is enhanced by spatially heterogeneous activity

    Full text link
    Sub-threshold stimuli cannot initiate excitations in active media, but surprisingly as we show in this paper, they can alter the time-evolution of spatially heterogeneous activity by modifying the recovery dynamics. This results in significant reduction of waveback velocity which may lead to spatial coherence, terminating all activity in the medium including spatiotemporal chaos. We analytically derive model-independent conditions for which such behavior can be observed.Comment: 5 pages, 5 figure

    Transport coefficients for the shear dynamo problem at small Reynolds numbers

    Full text link
    We build on the formulation developed in Sridhar & Singh (JFM, 664, 265, 2010), and present a theory of the \emph{shear dynamo problem} for small magnetic and fluid Reynolds numbers, but for arbitrary values of the shear parameter. Specializing to the case of a mean magnetic field that is slowly varying in time, explicit expressions for the transport coefficients, αil\alpha_{il} and ηiml\eta_{iml}, are derived. We prove that, when the velocity field is non helical, the transport coefficient αil\alpha_{il} vanishes. We then consider forced, stochastic dynamics for the incompressible velocity field at low Reynolds number. An exact, explicit solution for the velocity field is derived, and the velocity spectrum tensor is calculated in terms of the Galilean--invariant forcing statistics. We consider forcing statistics that is non helical, isotropic and delta-correlated-in-time, and specialize to the case when the mean-field is a function only of the spatial coordinate X3X_3 and time τ\tau\,; this reduction is necessary for comparison with the numerical experiments of Brandenburg, R{\"a}dler, Rheinhardt & K\"apyl\"a (ApJ, 676, 740, 2008). Explicit expressions are derived for all four components of the magnetic diffusivity tensor, ηij(τ)\eta_{ij}(\tau)\,. These are used to prove that the shear-current effect cannot be responsible for dynamo action at small \re and \rem, but for all values of the shear parameter.Comment: 27 pages, 5 figures, Published in Physical Review

    Fibroblast mediated dynamics in diffusively uncoupled myocytes -- a simulation study using 2-cell motifs

    Full text link
    In healthy hearts myocytes are typically coupled to nearest neighbours through gap junctions. Under pathological conditions such as fibrosis, or in scar tissue, or across ablation lines myocytes can uncouple from their neighbours. Electrical conduction may still occur via fibroblasts that not only couple proximal myocytes but can also couple otherwise unconnected regions. We hypothesise that such coupling can alter conduction between myocytes via introduction of delays or by initiation of premature stimuli that can potentially result in reentry or conduction blocks. To test this hypothesis we have developed several 22-cell motifs and investigated the effect of fibroblast mediated electrical coupling between uncoupled myocytes. We have identified various regimes of myocyte behaviour that depend on the strength of gap-junctional conductance, connection topology, and parameters of the myocyte and fibroblast models. These motifs are useful in developing a mechanistic understanding of long-distance coupling on myocyte dynamics and enable the characterisation of interaction between different features such as myocyte and fibroblast properties, coupling strengths and pacing period. They are computationally inexpensive and allow for incorporation of spatial effects such as conduction velocity. They provide a framework for constructing scar tissue boundaries and enable linking of cellular level interactions with scar induced arrhythmia

    Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) nano-composites

    Get PDF
    Novel biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [PHBV]/graphene nanocomposites were prepared by solution casting. The thermal properties, crystallization behavior, microstructure, and fracture morphology of the composites were investigated. Scanning electron microscope (SEM) results show that graphene layers are homogeneously dispersed in the polymer matrix. X-ray diffraction (XRD) and dynamic scanning calorimetry (DSC) studies show that the well dispersed graphene sheets act as nucleating agent for crystallization. Consequently, the mechanical properties of the composites have been substantially improved as evident from dynamic mechanical and static tensile tests. Differential thermal analysis (DTA) showed an increase in temperature of maximum degradation. Soil degradation tests of PHBV/graphene nanocomposites showed that presence of graphene doesn’t interfere in its biodegradability

    Microwave properties of (PrxY1x)Ba2Cu3O7δ(Pr_xY_{1-x})Ba_2Cu_3O_{7-\delta} : Influence of magnetic scattering

    Full text link
    We report measurements of the surface impedance Zs=Rs+iXsZ_s=R_s+iX_s of (PrxY1x)Ba2Cu3O7δ(Pr_xY_{1-x})Ba_2Cu_3O_{7-\delta}, (x=0,0.15,0.23,0.3,0.4,0.5)(x=0,0.15,0.23,0.3,0.4,0.5). Increasing PrPr concentration leads to some striking results not observed in samples doped by non-magnetic constituents. The three principal features of the Rs(T)R_s(T) data - multiple structure in the transition, a high residual resistance and, at high PrPr concentrations, an upturn of the low TT data, are all characteristic of the influence of magnetic scattering on superconductivity, and appear to be common to materials where magnetism and superconductivity coexist. The low TT behavior of λ(T)\lambda (T) appears to change from TT to T4T^4 at large PrPr doping, and provides evidence of the influence of magnetic pairbreaking of the PrPr.Comment: 5 pages, 3 eps figures, Revtex, 2-column format, uses graphicx. To appear in Physica C. Postscript version also available at http://sagar.physics.neu.edu/preprints.htm
    corecore