1,408 research outputs found

    Acceleration disturbances due to local gravity gradients in ASTROD I

    Full text link
    The Astrodynamical Space Test of Relativity using Optical Devices (ASTROD) mission consists of three spacecraft in separate solar orbits and carries out laser interferometric ranging. ASTROD aims at testing relativistic gravity, measuring the solar system and detecting gravitational waves. Because of the larger arm length, the sensitivity of ASTROD to gravitational waves is estimated to be about 30 times better than Laser Interferometer Space Antenna (LISA) in the frequency range lower than about 0.1 mHz. ASTROD I is a simple version of ASTROD, employing one spacecraft in a solar orbit. It is the first step for ASTROD and serves as a technology demonstration mission for ASTROD. In addition, several scientific results are expected in the ASTROD I experiment. The required acceleration noise level of ASTROD I is 10^-13 m s^-2 Hz^{-1/2} at the frequency of 0.1 mHz. In this paper, we focus on local gravity gradient noise that could be one of the largest acceleration disturbances in the ASTROD I experiment. We have carried out gravitational modelling for the current test-mass design and simplified configurations of ASTROD I by using an analytical method and the Monte Carlo method. Our analyses can be applied to figure out the optimal designs of the test mass and the constructing materials of the spacecraft, and the configuration of compensation mass to reduce local gravity gradients.Comment: 6 pages, presented at the 6th Edoardo Amaldi Conference (Okinawa Japan, June 2005); to be published in Journal of Physics: Conference Serie

    Geophysical constraint on a relic background of the dilatons

    Full text link
    According to a scenario in string cosmology, a relic background of light dilatons can be a significant component of the dark matter in the Universe. A new approach of searching for such a dilatonic background by observing Earth's surface gravity was proposed in my previous work. In this paper, the concept of the geophysical search is briefly reviewed, and the geophysical constraint on the dilaton background is presented as a function of the strength of the dilaton coupling, qb2q_b^2. For simplicity, I focus on massless dilatons and assume a simple Earth model. With the current upper limit on qb2q_b^2, we obtain the upper limit on the dimensionless energy density of the massless background, ΩDWh10026×107\Omega_{DW}h^2_{100} \leq 6 \times 10^{-7}, which is about one-order of magnitude more stringent than the one from astrophysical observations, at the frequency of \sim 7 ×\times 105^{-5} Hz. If the magnitude of qb2q_b^2 is experimentally found to be smaller than the current upper limit by one order of magnitude, the geophysical upper limit on ΩDWh1002\Omega_{DW}h^2_{100} becomes less stringent and comparable to the one obtained from the astrophysical observations.Comment: 6 pages, Proceedings for the 8th Edoardo Amaldi Conference on Gravitational Waves, 21-26 June, 2009, Columbia University, New York, US

    Electrothermal flow in Dielectrophoresis of Single-Walled Carbon Nanotubes

    Full text link
    We theoretically investigate the impact of the electrothermal flow on the dielectrophoretic separation of single-walled carbon nanotubes (SWNT). The electrothermal flow is observed to control the motions of semiconducting SWNTs in a sizeable domain near the electrodes under typical experimental conditions, therefore helping the dielectrophoretic force to attract semiconducting SWNTs in a broader range. Moreover, with the increase of the surfactant concentration, the electrothermal flow is enhanced, and with the change of frequency, the pattern of the electrothermal flow changes. It is shown that under some typical experimental conditions of dielectrophoresis separation of SWNTs, the electrothermal flow is a dominating factor in determining the motion of SWNTs.Comment: 5 pages, 4 figures, Submitted to PR

    Model-independent study of the QCD sum rule for the pi NN coupling constant

    Full text link
    We reinvestigate the QCD sum rule for the pi NN coupling constant, g, starting from the vacuum-to-pion matrix element of the correlation function of the interpolating fields of two nucleons. We study in detail the physical content of the correlation function without referring to the effective theory. We consider the invariant correlation functions by splitting the correlation function into different Dirac structures. We show that the coefficients of the double-pole terms are proportional to g but that the coefficients of the single-pole terms are not determined by g. In the chiral limit the single-pole terms as well as the continuum terms are ill defined in the dispersion integral. Therefore, the use of naive QCD sum rules obtained from the invariant correlation functions is not justified. A possible procedure to avoid this difficulty is discussed.Comment: 20 pages, 2 figure

    The Fuzzy Model for Diagnosis of Animal Disease

    Full text link

    An aerogel Cherenkov detector for multi-GeV photon detection with low sensitivity to neutrons

    Get PDF
    We describe a novel photon detector which operates under an intense flux of neutrons. It is composed of lead-aerogel sandwich counter modules. Its salient features are high photon detection efficiency and blindness to neutrons. As a result of Monte Carlo (MC) simulations, the efficiency for photons with the energy larger than 1 GeV is expected to be higher than 99.5% and that for 2 GeV/cc neutrons less than 1%. The performance on the photon detection under such a large flux of neutrons was measured for a part of the detector. It was confirmed that the efficiency to photons with the energy >>1 GeV was consistent with the MC expectation within 8.2% uncertainty.Comment: 16 pages, 16 figures, submitted to Prog. Theor. Exp. Phy
    corecore