363 research outputs found
Are spectroscopic factors from transfer reactions consistent with asymptotic normalisation coefficients?
It is extremely important to devise a reliable method to extract
spectroscopic factors from transfer cross sections. We analyse the standard
DWBA procedure and combine it with the asymptotic normalisation coefficient,
extracted from an independent data set. We find that the single particle
parameters used in the past generate inconsistent asymptotic normalization
coefficients. In order to obtain a consistent spectroscopic factor,
non-standard parameters for the single particle overlap functions can be used
but, as a consequence, often reduced spectroscopic strengths emerge. Different
choices of optical potentials and higher order effects in the reaction model
are also studied. Our test cases consist of: C(d,p)C(g.s.) at
MeV, O(d,p)O(g.s.) at MeV and
Ca(d,p)Ca(g.s.) at MeV. We underline the
importance of performing experiments specifically designed to extract ANCs for
these systems.Comment: 15 pages, 12 figures, Phys. Rev. C (in press
Coupled-channels effects in elastic scattering and near-barrier fusion induced by weakly bound nuclei and exotic halo nuclei
The influence on fusion of coupling to the breakup process is investigated
for reactions where at least one of the colliding nuclei has a sufficiently low
binding energy for breakup to become an important process. Elastic scattering,
excitation functions for sub-and near-barrier fusion cross sections, and
breakup yields are analyzed for Li+Co. Continuum-Discretized
Coupled-Channels (CDCC) calculations describe well the data at and above the
barrier. Elastic scattering with Li (as compared to Li) indicates
the significant role of breakup for weakly bound projectiles. A study of
He induced fusion reactions with a three-body CDCC method for the
He halo nucleus is presented. The relative importance of breakup and
bound-state structure effects on total fusion is discussed.Comment: 29 pages, 9 figure
Coulomb and nuclear breakup of B
The cross sections for the (B,Be-) breakup reaction on Ni
and Pb targets at the beam energies of 25.8 MeV and 415 MeV have been
calculated within a one-step prior-form distorted-wave Born approximation. The
relative contributions of Coulomb and nuclear breakup of dipole and quadrupole
multipolarities as well as their interference have been determined. The nuclear
breakup contributions are found to be substantial in the angular distributions
of the Be fragment for angles in the range of 30 - 80 at
25.8 MeV beam energy. The Coulomb-nuclear interference terms make the dipole
cross section larger than that of quadrupole even at this low beam energy.
However, at the incident energy of 415 MeV, these effects are almost negligible
in the angular distributions of the (Be-p) coincidence cross sections at
angles below 4.Comment: Revised version, accepted for publication in Phys. Rev.
Effects of finite width of excited states on heavy-ion sub-barrier fusion reactions
We discuss the effects of coupling of the relative motion to nuclear
collective excitations which have a finite lifetime on heavy-ion fusion
reactions at energies near and below the Coulomb barrier. Both spreading and
escape widths are explicitly taken into account in the exit doorway model. The
coupled-channels equations are numerically solved to show that the finite
resonance width always hinders fusion cross sections at subbarrier energies
irrespective of the relative importance between the spreading and the escape
widths. We also show that the structure of fusion barrier distribution is
smeared due to the spreading of the strength of the doorway state.Comment: 13 pages, 3 figures, Submitted to Physical Review
Transfer/Breakup Modes in the 6He+209Bi Reaction Near and Below the Coulomb Barrier
Reaction products from the interaction of 6He with 209Bi have been measured
at energies near the Coulomb barrier. A 4He group of remarkable intensity,
which dominates the total reaction cross section, has been observed. The
angular distribution of the group suggests that it results primarily from a
direct nuclear process. It is likely that this transfer/breakup channel is the
doorway state that accounts for the previously observed large sub-barrier
fusion enhancement in this system.Comment: 4 pages; 3 figure
Optical model potentials involving loosely bound p-shell nuclei around 10 MeV/A
We present the results of a search for optical model potentials for use in
the description of elastic scattering and transfer reactions involving stable
and radioactive p-shell nuclei. This was done in connection with our program to
use transfer reactions to obtain data for nuclear astrophysics, in particular
for the determination of the astrophysical S_17 factor for 7Be(p,\gamma)8B
using two (7Be,8B) proton transfer reactions. Elastic scattering was measured
using 7Li, 10B, 13C and 14N projectiles on 9Be and 13C targets at or about
E/A=10 MeV/nucleon. Woods-Saxon type optical model potentials were extracted
and are compared with potentials obtained from a microscopic double folding
model. We use these results to find optical model potentials for unstable
nuclei with emphasis on the reliability of the description they provide for
peripheral proton transfer reactions. We discuss the uncertainty introduced by
the procedure in the prediction of the DWBA cross sections for the (7Be,8B)
reactions used in extracting the astrophysical factor S_17(0).Comment: 16 pages, LaTEX file, 9 figures (PostScript files
Devil's staircase transition of the electronic structures in CeSb
Solids with competing interactions often undergo complex phase transitions
with a variety of long-periodic modulations. Among such transition, devil's
staircase is the most complex phenomenon, and for it, CeSb is the most famous
material, where a number of the distinct phases with long-periodic
magnetostructures sequentially appear below the Neel temperature. An evolution
of the low-energy electronic structure going through the devil's staircase is
of special interest, which has, however, been elusive so far despite the
40-years of intense researches. Here we use bulk-sensitive angle-resolved
photoemission spectroscopy and reveal the devil's staircase transition of the
electronic structures. The magnetic reconstruction dramatically alters the band
dispersions at each transition. We moreover find that the well-defined band
picture largely collapses around the Fermi energy under the long-periodic
modulation of the transitional phase, while it recovers at the transition into
the lowest-temperature ground state. Our data provide the first direct evidence
for a significant reorganization of the electronic structures and spectral
functions occurring during the devil's staircase.Comment: 22 pages, 5 figure
Lymph node metastasis in grossly apparent clinical stage Ia epithelial ovarian cancer: Hacettepe experience and review of literature
Background Lymphadenectomy is an integral part of the staging system of epithelial ovarian cancer. However, the extent of lymphadenectomy in the early stages of ovarian cancer is controversial. The objective of this study was to identify the lymph node involvement in unilateral epithelial ovarian cancer apparently confined to the one ovary (clinical stage Ia). Methods A prospective study of clinical stage I ovarian cancer patients is presented. Patient's characteristics and tumor histopathology were the variables evaluated. Results Thirty three ovarian cancer patients with intact ovarian capsule were evaluated. Intraoperatively, neither of the patients had surface involvement, adhesions, ascites or palpable lymph nodes (supposed to be clinical stage Ia). The mean age of the study group was 55.3 ± 11.8. All patients were surgically staged and have undergone a systematic pelvic and paraaortic lymphadenectomy. Final surgicopathologic reports revealed capsular involvement in seven patients (21.2%), contralateral ovarian involvement in two (6%) and omental metastasis in one (3%) patient. There were two patients (6%) with lymph node involvement. One of the two lymph node metastasis was solely in paraaortic node and the other metastasis was in ipsilateral pelvic lymph node. Ovarian capsule was intact in all of the patients with lymph node involvement and the tumor was grade 3. Conclusion In clinical stage Ia ovarian cancer patients, there may be a risk of paraaortic and pelvic lymph node metastasis. Further studies with larger sample size are needed for an exact conclusion.PubMedWoSScopu
- …