363 research outputs found

    Are spectroscopic factors from transfer reactions consistent with asymptotic normalisation coefficients?

    Full text link
    It is extremely important to devise a reliable method to extract spectroscopic factors from transfer cross sections. We analyse the standard DWBA procedure and combine it with the asymptotic normalisation coefficient, extracted from an independent data set. We find that the single particle parameters used in the past generate inconsistent asymptotic normalization coefficients. In order to obtain a consistent spectroscopic factor, non-standard parameters for the single particle overlap functions can be used but, as a consequence, often reduced spectroscopic strengths emerge. Different choices of optical potentials and higher order effects in the reaction model are also studied. Our test cases consist of: 14^{14}C(d,p)15^{15}C(g.s.) at Edlab=14E_d^{lab}=14 MeV, 16^{16}O(d,p)17^{17}O(g.s.) at Edlab=15E_d^{lab}=15 MeV and 40^{40}Ca(d,p)41^{41}Ca(g.s.) at Edlab=11E_d^{lab}=11 MeV. We underline the importance of performing experiments specifically designed to extract ANCs for these systems.Comment: 15 pages, 12 figures, Phys. Rev. C (in press

    Coupled-channels effects in elastic scattering and near-barrier fusion induced by weakly bound nuclei and exotic halo nuclei

    Get PDF
    The influence on fusion of coupling to the breakup process is investigated for reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become an important process. Elastic scattering, excitation functions for sub-and near-barrier fusion cross sections, and breakup yields are analyzed for 6,7^{6,7}Li+59^{59}Co. Continuum-Discretized Coupled-Channels (CDCC) calculations describe well the data at and above the barrier. Elastic scattering with 6^{6}Li (as compared to 7^{7}Li) indicates the significant role of breakup for weakly bound projectiles. A study of 4,6^{4,6}He induced fusion reactions with a three-body CDCC method for the 6^6He halo nucleus is presented. The relative importance of breakup and bound-state structure effects on total fusion is discussed.Comment: 29 pages, 9 figure

    Coulomb and nuclear breakup of 8^8B

    Get PDF
    The cross sections for the (8^8B,7^7Be-pp) breakup reaction on 58^{58}Ni and 208^{208}Pb targets at the beam energies of 25.8 MeV and 415 MeV have been calculated within a one-step prior-form distorted-wave Born approximation. The relative contributions of Coulomb and nuclear breakup of dipole and quadrupole multipolarities as well as their interference have been determined. The nuclear breakup contributions are found to be substantial in the angular distributions of the 7^7Be fragment for angles in the range of 30^\circ - 80^\circ at 25.8 MeV beam energy. The Coulomb-nuclear interference terms make the dipole cross section larger than that of quadrupole even at this low beam energy. However, at the incident energy of 415 MeV, these effects are almost negligible in the angular distributions of the (7^7Be-p) coincidence cross sections at angles below 4^\circ.Comment: Revised version, accepted for publication in Phys. Rev.

    Effects of finite width of excited states on heavy-ion sub-barrier fusion reactions

    Full text link
    We discuss the effects of coupling of the relative motion to nuclear collective excitations which have a finite lifetime on heavy-ion fusion reactions at energies near and below the Coulomb barrier. Both spreading and escape widths are explicitly taken into account in the exit doorway model. The coupled-channels equations are numerically solved to show that the finite resonance width always hinders fusion cross sections at subbarrier energies irrespective of the relative importance between the spreading and the escape widths. We also show that the structure of fusion barrier distribution is smeared due to the spreading of the strength of the doorway state.Comment: 13 pages, 3 figures, Submitted to Physical Review

    Transfer/Breakup Modes in the 6He+209Bi Reaction Near and Below the Coulomb Barrier

    Full text link
    Reaction products from the interaction of 6He with 209Bi have been measured at energies near the Coulomb barrier. A 4He group of remarkable intensity, which dominates the total reaction cross section, has been observed. The angular distribution of the group suggests that it results primarily from a direct nuclear process. It is likely that this transfer/breakup channel is the doorway state that accounts for the previously observed large sub-barrier fusion enhancement in this system.Comment: 4 pages; 3 figure

    Optical model potentials involving loosely bound p-shell nuclei around 10 MeV/A

    Get PDF
    We present the results of a search for optical model potentials for use in the description of elastic scattering and transfer reactions involving stable and radioactive p-shell nuclei. This was done in connection with our program to use transfer reactions to obtain data for nuclear astrophysics, in particular for the determination of the astrophysical S_17 factor for 7Be(p,\gamma)8B using two (7Be,8B) proton transfer reactions. Elastic scattering was measured using 7Li, 10B, 13C and 14N projectiles on 9Be and 13C targets at or about E/A=10 MeV/nucleon. Woods-Saxon type optical model potentials were extracted and are compared with potentials obtained from a microscopic double folding model. We use these results to find optical model potentials for unstable nuclei with emphasis on the reliability of the description they provide for peripheral proton transfer reactions. We discuss the uncertainty introduced by the procedure in the prediction of the DWBA cross sections for the (7Be,8B) reactions used in extracting the astrophysical factor S_17(0).Comment: 16 pages, LaTEX file, 9 figures (PostScript files

    Devil's staircase transition of the electronic structures in CeSb

    Full text link
    Solids with competing interactions often undergo complex phase transitions with a variety of long-periodic modulations. Among such transition, devil's staircase is the most complex phenomenon, and for it, CeSb is the most famous material, where a number of the distinct phases with long-periodic magnetostructures sequentially appear below the Neel temperature. An evolution of the low-energy electronic structure going through the devil's staircase is of special interest, which has, however, been elusive so far despite the 40-years of intense researches. Here we use bulk-sensitive angle-resolved photoemission spectroscopy and reveal the devil's staircase transition of the electronic structures. The magnetic reconstruction dramatically alters the band dispersions at each transition. We moreover find that the well-defined band picture largely collapses around the Fermi energy under the long-periodic modulation of the transitional phase, while it recovers at the transition into the lowest-temperature ground state. Our data provide the first direct evidence for a significant reorganization of the electronic structures and spectral functions occurring during the devil's staircase.Comment: 22 pages, 5 figure

    Lymph node metastasis in grossly apparent clinical stage Ia epithelial ovarian cancer: Hacettepe experience and review of literature

    Get PDF
    Background Lymphadenectomy is an integral part of the staging system of epithelial ovarian cancer. However, the extent of lymphadenectomy in the early stages of ovarian cancer is controversial. The objective of this study was to identify the lymph node involvement in unilateral epithelial ovarian cancer apparently confined to the one ovary (clinical stage Ia). Methods A prospective study of clinical stage I ovarian cancer patients is presented. Patient's characteristics and tumor histopathology were the variables evaluated. Results Thirty three ovarian cancer patients with intact ovarian capsule were evaluated. Intraoperatively, neither of the patients had surface involvement, adhesions, ascites or palpable lymph nodes (supposed to be clinical stage Ia). The mean age of the study group was 55.3 ± 11.8. All patients were surgically staged and have undergone a systematic pelvic and paraaortic lymphadenectomy. Final surgicopathologic reports revealed capsular involvement in seven patients (21.2%), contralateral ovarian involvement in two (6%) and omental metastasis in one (3%) patient. There were two patients (6%) with lymph node involvement. One of the two lymph node metastasis was solely in paraaortic node and the other metastasis was in ipsilateral pelvic lymph node. Ovarian capsule was intact in all of the patients with lymph node involvement and the tumor was grade 3. Conclusion In clinical stage Ia ovarian cancer patients, there may be a risk of paraaortic and pelvic lymph node metastasis. Further studies with larger sample size are needed for an exact conclusion.PubMedWoSScopu
    corecore