25,307 research outputs found
Constraints on the total coupling strength to bosons in iron based superconductors
At present, there is still no consistent interpretation of the normal and
superconducting properties of Fe-based superconductors (FeSCs). The strength of
the el-el interaction and the role of correlation effects are under debate.
Here, we examine several common materials and illustrate various problems and
concepts that are generic for all FeSCs. Based on empirical observations and
qualitative insight from density functional theory, we show that the
superconducting and low-energy thermodynamic properties of the FeSCs can be
described semi-quantitively within multiband Eliashberg theory. We account for
an important high-energy mass renormalization phenomenologically,and in
agreement with constraints provided by thermodynamic, optical, and
angle-resolved photoemission data. When seen in this way, all FeSCs with
40~K studied so far are found to belong to an {\it
intermediate} coupling regime. This finding is in contrast to the strong
coupling scenarios proposed in the early period of the FeSC history.We also
discuss several related issues, including the role of band shifts as measured
by the positions of van Hove singularities, and the nature of a recently
suggested quantum critical point in the strongly hole-doped systems
AFeAs (A = K, Rb, Cs). Using high-precision full relativistic GGA-band
structure calculations, we arrive at a somewhat milder mass renormalization in
comparison with previous studies. From the calculated mass anisotropies of all
Fermi surface sheets, only the -pocket near the corner of the BZ
is compatible with the experimentally observed anisotropy of the upper critical
field. pointing to its dominant role in the superconductivity of these three
compounds.Comment: 19 pages, 9 figure
Space and biotechnology: An industry profile
The results of a study conducted by the Center for Space and Advanced Technology (CSAT) for NASA-JSC are presented. The objectives were to determine the interests and attitudes of the U.S. biotechnology industry toward space biotechnology and to prepare a concise review of the current activities of the biotechnology industry. In order to accomplish these objectives, two primary actions were taken. First, a questionnaire was designed, reviewed, and distributed to U.S. biotechnology companies. Second, reviews of the various biotechnology fields were prepared in several aspects of the industry. For each review, leading figures in the field were asked to prepare a brief review pointing out key trends and current industry technical problems. The result is a readable narrative of the biotechnology industry which will provide space scientists and engineers valuable clues as to where the space environment can be explored to advance the U.S. biotechnology industry
Applications of radio interferometry to navigation
Radio astronomy experiments have demonstrated the feasibility of making precise position measurements using interferometry techniques. The application of this method to navigation and marine geodesy is discussed, and comparisons are made with existing navigation systems. The very long baseline technique, with a master station, can use either an artificial satellite or natural sources as position references; a high-speed data link is required. A completely ship-borne system is shown to be feasible, at the cost of poorer sensitivity for natural sources. A comparison of Doppler, delay and phase-track modes of operating a very long baseline configuration is made, as that between instantaneous measurements and those where a source can be tracked from horizon to transit. Geometric limitations in latitude and longitude coverage are discussed. The characteristics of natural radio sources, their flux, distribution on the sky, and apparent size are shown to provide a limit on position measurements precision. The atmosphere and frequency standard used both contribute to position measurement uncertainty by affecting interferometric phase
Electronic structure and magnetic properties of Li_2ZrCuO_4 - a spin 1/2 Heisenberg system in vicinity to a quantum critical point
Based on density functional calculations, we present a detailed theoretical
study of the electronic structure and the magnetic properties of the quasi-one
dimensional chain cuprate Li_2ZrCuO_4 (Li_2CuZrO_4). For the relevant ratio of
the next-nearest neighbor exchange J_2 to the nearest neighbor exchange J_1 we
find alpha = -J_2/J_1 = 0.22\pm0.02 which is very close to the critical point
at 1/4. Owing this vicinity to a ferromagnetic-helical critical point, we study
in detail the influence of structural peculiarities such as the reported Li
disorder and the non-planar chain geometry on the magnetic interactions
combining the results of LDA based tight-binding models with LDA+U derived
exchange parameters. Our investigation is complemented by an exact
diagonalization study of a multi-band Hubbard model for finite clusters
predicting a strong temperature dependence of the optical conductivity for
Li_2ZrCuO_4
Intrinsic Variability and Field Statistics for the Vela Pulsar: 2. Systematics and Single-Component Fits
Individual pulses from pulsars have intensity-phase profiles that differ
widely from pulse to pulse, from the average profile, and from phase to phase
within a pulse. Widely accepted explanations do not exist for this variability
or for the mechanism producing the radiation. The variability corresponds to
the field statistics, particularly the distribution of wave field amplitudes,
which are predicted by theories for wave growth in inhomogeneous media. This
paper shows that the field statistics of the Vela pulsar (PSR B0833-45) are
well-defined and vary as a function of pulse phase, evolving from Gaussian
intensity statistics off-pulse to approximately power-law and then lognormal
distributions near the pulse peak to approximately power-law and eventually
Gaussian statistics off-pulse again. Detailed single-component fits confirm
that the variability corresponds to lognormal statistics near the peak of the
pulse profile and Gaussian intensity statistics off-pulse. The lognormal field
statistics observed are consistent with the prediction of stochastic growth
theory (SGT) for a purely linear system close to marginal stability. The
simplest interpretations are that the pulsar's variability is a direct
manifestation of an SGT state and the emission mechanism is linear (either
direct or indirect), with no evidence for nonlinear mechanisms like
modulational instability and wave collapse which produce power-law field
statistics. Stringent constraints are placed on nonlinear mechanisms: they must
produce lognormal statistics when suitably ensemble-averaged. Field statistics
are thus a powerful, potentially widely applicable tool for understanding
variability and constraining mechanisms and source characteristics of coherent
astrophysical and space emissions.Comment: 11 pages, 12 figures. Accepted by Monthly Notices of the Royal
Astronmical Society in April 200
Spontaneous Raman scattering for simultaneous measurements of in-cylinder species
A technique for multi-species mole fraction measurement in internal combustion engines is described. The technique is based on the spontaneous Raman scattering. It can simultaneously provide the mole fractions of several species of N-2, O-2, H2O, CO2 and fuel. Using the system, simultaneous measurement of air/fuel ratio and burnt residual gas are carried out during the mixture process in a Controlled Auto Ignition (CAI) combustion engine. The accuracy and consistency of the measured results were confirmed by the measured air fuel ratio using an exhaust gas analyzer and independently calculated mole fraction values. Measurement of species mole fractions during combustion process has also been demonstrated. It shows that the SRS can provide valuable data on this process in a CAI combustion engine
Intrinsic Variability and Field Statistics for the Vela Pulsar: 3. Two-Component Fits and Detailed Assessment of Stochastic Growth Theory
The variability of the Vela pulsar (PSR B0833-45) corresponds to well-defined
field statistics that vary with pulsar phase, ranging from Gaussian intensity
statistics off-pulse to approximately power-law statistics in a transition
region and then lognormal statistics on-pulse, excluding giant micropulses.
These data are analyzed here in terms of two superposed wave populations, using
a new calculation for the amplitude statistics of two vectorially-combined
transverse fields. Detailed analyses show that the approximately power-law and
lognormal distributions observed are fitted well at essentially all on-pulse
phases by Gaussian-lognormal and double-lognormal combinations, respectively.
These good fits, plus the smooth but significant variations in fit parameters
across the source, provide strong evidence that the approximately power-law
statistics observed in the transition region are not intrinsic. Instead, the
data are consistent with normal pulsar emission having lognormal statistics at
all phases. This is consistent with generation in an inhomogeneous source
obeying stochastic growth theory (SGT) and with the emission mechanism being
purely linear (either direct or indirect). A nonlinear mechanism is viable only
if it produces lognormal statistics when suitably ensemble-averaged. Variations
in the SGT fit parameters with phase imply that the radiation is relatively
more variable near the pulse edges than near the center, as found in earlier
work. In contrast, Vela's giant micropulses come from a very restricted phase
range and have power-law statistics with indices () not
inconsistent with nonlinear wave collapse. These results imply that normal
pulses have a different source and generation mechanism than giant micropulses,
as suggested previously on other grounds.Comment: 10 pages and 14 figures. Accepted by Monthly Notices of the Royal
Astronomical Society in April 200
Power system applications of fiber optic sensors
This document is a progress report of work done in 1985 on the Communications and Control for Electric Power Systems Project at the Jet Propulsion Laboratory. These topics are covered: Electric Field Measurement, Fiber Optic Temperature Sensing, and Optical Power transfer. Work was done on the measurement of ac and dc electric fields. A prototype sensor for measuring alternating fields was made using a very simple electroscope approach. An electronic field mill sensor for dc fields was made using a fiber optic readout, so that the entire probe could be operated isolated from ground. There are several instances in which more precise knowledge of the temperature of electrical power apparatus would be useful. This report describes a number of methods whereby the distributed temperature profile can be obtained using a fiber optic sensor. The ability to energize electronics by means of an optical fiber has the advantage that electrical isolation is maintained at low cost. In order to accomplish this, it is necessary to convert the light energy into electrical form by means of photovoltaic cells. JPL has developed an array of PV cells in gallium arsenide specifically for this purpose. This work is described
Power system applications of fiber optics
Power system applications of optical systems, primarily using fiber optics, are reviewed. The first section reviews fibers as components of communication systems. The second section deals with fiber sensors for power systems, reviewing the many ways light sources and fibers can be combined to make measurements. Methods of measuring electric field gradient are discussed. Optical data processing is the subject of the third section, which begins by reviewing some widely different examples and concludes by outlining some potential applications in power systems: fault location in transformers, optical switching for light fired thyristors and fault detection based on the inherent symmetry of most power apparatus. The fourth and final section is concerned with using optical fibers to transmit power to electric equipment in a high voltage situation, potentially replacing expensive high voltage low power transformers. JPL has designed small photodiodes specifically for this purpose, and fabricated and tested several samples. This work is described
Enhanced quasiparticle heat conduction of the multigap superconductor Lu2Fe3Si5
The thermal transport measurements have been made on the Fe-based
superconductor Lu2Fe3Si5 (Tc ~ 6 K) down to a very low temperature Tc/120. The
field and temperature dependences of the thermal conductivity confirm the
multigap superconductivity with fully opened gaps on the whole Fermi surfaces.
In comparison to MgB2 as a typical example of the multigap superconductor in a
p-electron system, Lu2Fe3Si5 reveals a remarkably enhanced quasiparticle heat
conduction in the mixed state. The results can be interpreted as a consequence
of the electronic correlations derived from Fe 3d-electrons.Comment: 5 pages, 4 figure
- …