326 research outputs found
Efficient readout of micromechanical resonator arrays in ambient conditions
We present a method for efficient spectral readout of mechanical resonator
arrays in dissipative environments. Magnetomotive drive and detection is used
to drive double clamped resonators in the nonlinear regime. Resonators with
almost identical resonance frequencies can be tracked individually by sweeping
the drive power. Measurements are performed at room temperature and atmospheric
pressure. These conditions enable application in high throughput resonant
sensor arrays.Comment: 4 pages, 4 figure
Strongly coupled modes in a weakly driven micromechanical resonator
We demonstrate strong coupling between the flexural vibration modes of a
clamped-clamped micromechanical resonator vibrating at low amplitudes. This
coupling enables the direct measurement of the frequency response via
amplitude- and phase modulation schemes using the fundamental mode as a
mechanical detector. In the linear regime, a frequency shift of
is observed for a mode with a line width of
in vacuum. The measured response is well-described by the
analytical model based on the Euler-Bernoulli beam including tension.
Calculations predict an upper limit for the room-temperature Q-factor of
for our top-down fabricated micromechanical beam
resonators.Comment: 9 pages, 2 figure
Nanomechanical properties of few-layer graphene membranes
We have measured the mechanical properties of few-layer graphene and graphite
flakes that are suspended over circular holes. The spatial profile of the
flake's spring constant is measured with an atomic force microscope. The
bending rigidity of and the tension in the membranes are extracted by fitting a
continuum model to the data. For flakes down to eight graphene layers, both
parameters show a strong thickness-dependence. We predict fundamental resonance
frequencies of these nanodrums in the GHz range based on the measured bending
rigidity and tension.Comment: 9 pages, 3 figures, This article has been accepted by Appl. Phys.
Lett. After it is published, it will be found at http://apl.aip.org
Discrete-time quadrature feedback cooling of a radio-frequency mechanical resonator
We have employed a feedback cooling scheme, which combines high-frequency
mixing with digital signal processing. The frequency and damping rate of a 2
MHz micromechanical resonator embedded in a dc SQUID are adjusted with the
feedback, and active cooling to a temperature of 14.3 mK is demonstrated. This
technique can be applied to GHz resonators and allows for flexible control
strategies.Comment: To appear in Appl. Phys. Let
Electric-field control of interfering transport pathways in a single-molecule anthraquinone transistor
It is understood that molecular conjugation plays an important role in charge
transport through single-molecule junctions. Here, we investigate electron
transport through an anthraquinone based single-molecule three-terminal device.
With the use of an electric-field induced by a gate electrode, the molecule is
reduced resulting into a ten-fold increase in the off-resonant differential
conductance. Theoretical calculations link the change in differential
conductance to a reduction-induced change in conjugation, thereby lifting
destructive interference of transport pathways.Comment: Nano Letters (2015
In-Chain Tunneling Through Charge-Density Wave Nanoconstrictions and Break-Junctions
We have fabricated longitudinal nanoconstrictions in the charge-density wave
conductor (CDW) NbSe using a focused ion beam and using a mechanically
controlled break-junction technique. Conductance peaks are observed below the
TK and TK CDW transitions, which correspond closely
with previous values of the full CDW gaps and
obtained from photo-emission. These results can be explained by assuming
CDW-CDW tunneling in the presence of an energy gap corrugation
comparable to , which eliminates expected peak at
. The nanometer length-scales our experiments imply
indicate that an alternative explanation based on tunneling through
back-to-back CDW-normal junctions is unlikely.Comment: 5 pages, 3 figures, submitted to physical review letter
Single-vortex-induced voltage steps in Josephson-junction arrays
We have numerically and analytically studied ac+dc driven Josephson-junction
arrays with a single vortex or with a single vortex-antivortex pair present. We
find single-vortex steps in the voltage versus current characteristics (I-V) of
the array. They correspond microscopically to a single vortex phase-locked to
move a fixed number of plaquettes per period of the ac driving current. In
underdamped arrays we find vortex motion period doubling on the steps. We
observe subharmonic steps in both underdamped and overdamped arrays. We
successfully compare these results with a phenomenological model of vortex
motion with a nonlinear viscosity. The I-V of an array with a vortex-antivortex
pair displays fractional voltage steps. A possible connection of these results
to present day experiments is also discussed.Comment: 10 pages double sided with figures included in the text. To appear in
Journal of Physics, Condensed Matte
- …