684 research outputs found
Seismic imaging of deep low-velocity zone beneath the Dead Sea basin and transform fault : implications for strain localization and crustal rigidity
Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 33 (2006): L24314, doi:10.1029/2006GL027890.New seismic observations from the Dead Sea basin (DSB), a large pull-apart basin along the Dead Sea transform (DST) plate boundary, show a low velocity zone extending to a depth of 18 km under the basin. The lower crust and Moho are not perturbed. These observations are incompatible with the current view of mid-crustal strength at low temperatures and with support of the basin's negative load by a rigid elastic plate. Strain softening in the middle crust is invoked to explain the isostatic compensation and the rapid subsidence of the basin during the Pleistocene. Whether the deformation is influenced by the presence of fluids and by a long history of seismic activity on the DST, and what the exact softening mechanism is, remain open questions. The uplift surrounding the DST also appears to be an upper crustal phenomenon but its relationship to a mid-crustal strength minimum is less clear. The shear deformation associated with the transform plate boundary motion appears, on the other hand, to cut throughout the entire crust.Funded by USAID Middle Eastern Regional
Cooperation Program grant M21-012, with matching funds by the participating
institutions
Recommended from our members
11CO2 Fixation: A Renaissance in PET Radiochemistry
Carbon-11 labelled carbon dioxide is the cyclotron-generated feedstock reagent for most positron emission tomography (PET) tracers using this radionuclide. Most carbon-11 labels, however, are installed using derivative reagents generated from [11C]CO2. In recent years, [11C]CO2 has seen a revival in applications for the direct incorporation of carbon-11 into functional groups such as ureas, carbamates, oxazolidinones, carboxylic acids, esters, and amides. This review summarizes classical [11C]CO2 fixation strategies using organometallic reagents and then focuses on newly developed methods that employ strong organic bases to reversibly capture [11C]CO2 into solution, thereby enabling highly functionalized labelled compounds to be prepared. Labelled compounds and radiopharmaceuticals that have been translated to the clinic are highlighted.Chemistry and Chemical Biolog
Anidulafungin compared with fluconazole for treatment of candidemia and other forms of invasive candidiasis caused by Candida albicans: a multivariate analysis of factors associated with improved outcome
<p>Abstract</p> <p>Background</p> <p><it>Candida albicans </it>is the most common cause of candidemia and other forms of invasive candidiasis. Systemic infections due to <it>C. albicans </it>exhibit good susceptibility to fluconazole and echinocandins. However, the echinocandin anidulafungin was recently demonstrated to be more effective than fluconazole for systemic <it>Candida </it>infections in a randomized, double-blind trial among 245 patients. In that trial, most infections were caused by <it>C. albicans</it>, and all respective isolates were susceptible to randomized study drug. We sought to better understand the factors associated with the enhanced efficacy of anidulafungin and hypothesized that intrinsic properties of the antifungal agents contributed to the treatment differences.</p> <p>Methods</p> <p>Global responses at end of intravenous study treatment in patients with <it>C. albicans </it>infection were compared post-hoc. Multivariate logistic regression analyses were performed to predict response and to adjust for differences in independent baseline characteristics. Analyses focused on time to negative blood cultures, persistent infection at end of intravenous study treatment, and 6-week survival.</p> <p>Results</p> <p>In total, 135 patients with <it>C. albicans </it>infections were identified. Among these, baseline APACHE II scores were similar between treatment arms. In these patients, global response was significantly better for anidulafungin than fluconazole (81.1% vs 62.3%; 95% confidence interval [CI] for difference, 3.7-33.9). After adjusting for baseline characteristics, the odds ratio for global response was 2.36 (95% CI, 1.06-5.25). Study treatment and APACHE II score were significant predictors of outcome. The most predictive logistic regression model found that the odds ratio for study treatment was 2.60 (95% CI, 1.14-5.91) in favor of anidulafungin, and the odds ratio for APACHE II score was 0.935 (95% CI, 0.885-0.987), with poorer responses associated with higher baseline APACHE II scores. Anidulafungin was associated with significantly faster clearance of blood cultures (log-rank <it>p </it>< 0.05) and significantly fewer persistent infections (2.7% vs 13.1%; <it>p </it>< 0.05). Survival through 6 weeks did not differ between treatment groups.</p> <p>Conclusions</p> <p>In patients with <it>C. albicans </it>infection, anidulafungin was more effective than fluconazole, with more rapid clearance of positive blood cultures. This suggests that the fungicidal activity of echinocandins may have important clinical implications.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00058682">NCT00058682</a></p
Anomalous Dynamics of Translocation
We study the dynamics of the passage of a polymer through a membrane pore
(translocation), focusing on the scaling properties with the number of monomers
. The natural coordinate for translocation is the number of monomers on one
side of the hole at a given time. Commonly used models which assume Brownian
dynamics for this variable predict a mean (unforced) passage time that
scales as , even in the presence of an entropic barrier. However, the time
it takes for a free polymer to diffuse a distance of the order of its radius by
Rouse dynamics scales with an exponent larger than 2, and this should provide a
lower bound to the translocation time. To resolve this discrepancy, we perform
numerical simulations with Rouse dynamics for both phantom (in space dimensions
and 2), and self-avoiding (in ) chains. The results indicate that
for large , translocation times scale in the same manner as diffusion times,
but with a larger prefactor that depends on the size of the hole. Such scaling
implies anomalous dynamics for the translocation process. In particular, the
fluctuations in the monomer number at the hole are predicted to be
non-diffusive at short times, while the average pulling velocity of the polymer
in the presence of a chemical potential difference is predicted to depend on
.Comment: 9 pages, 9 figures. Submitted to Physical Review
A Novel and Generic Workflow of Indocyanine Green Perfusion Assessment Integrating Standardization and Quantification Towards Clinical Implementation
OBJECTIVE: This study aims to generate a reproducible and generalizable Workflow model of ICG-angiography integrating Standardization and Quantification (WISQ) that can be applied uniformly within the surgical innovation realm independent of the user. SUMMARY BACKGROUND DATA: Tissue perfusion based on indocyanine green (ICG)-angiography is a rapidly growing application in surgical innovation. Interpretation of have been subjective and error-prone due to the lack of a standardized and quantitative ICG-workflow and analytical methodology. There is a clinical need for a more generic, reproducible, and quantitative ICG perfusion model for objective assessment of tissue perfusion. METHODS: In this multicenter, proof-of-concept study, we present a generic and reproducible ICG-workflow integrating standardization and quantification for perfusion assessment. To evaluate our model's clinical feasibility and reproducibility, we assessed the viability of parathyroid glands after performing thyroidectomy. Biochemical hypoparathyroidism was used as the postoperative endpoint and its correlation with ICG quantification intraoperatively. Parathyroid gland are an ideal model as parathyroid function post-surgery is only affected by perfusion. RESULTS: We show that visual -subjective- interpretation of ICG-angiography by experienced surgeons on parathyroid perfusion cannot reliably predict organ function impairment postoperatively, emphasizing the importance of an ICG quantification model. WISQ was able to standardize and quantify ICG-angiography and provided a robust and reproducible perfusion curve analysis. A low ingress slope of the perfusion curve combined with a compromised egress slope was indicative for parathyroid organ dysfunction in 100% of the cases. CONCLUSION: WISQ needs prospective validation in larger series and may eventually support clinical decision-making to predict and prevent postoperative organ function impairment in a large and varied surgical population
- …