45 research outputs found
Willingness to pay for multifunctional megaprojects: A stated preference analysis among firms in the Amsterdam Zuidas area
http://hdl.handle.net/1871/1621
The Tyrosine Kinase Inhibitor Dasatinib Induces a Marked Adipogenic Differentiation of Human Multipotent Mesenchymal Stromal Cells
BACKGROUND: The introduction of specific BCR-ABL inhibitors in chronic myelogenous leukemia therapy has entirely mutated the prognosis of this hematologic cancer from being a fatal disorder to becoming a chronic disease. Due to the probable long lasting treatment with tyrosine-kinase inhibitors (TKIs), the knowledge of their effects on normal cells is of pivotal importance. DESIGN AND METHODS: We investigated the effects of dasatinib treatment on human bone marrow-derived mesenchymal stromal cells (MSCs). RESULTS: Our findings demonstrate, for the first time, that dasatinib induces MSCs adipocytic differentiation. Particularly, when the TKI is added to the medium inducing osteogenic differentiation, a high MSCs percentage acquires adipocytic morphology and overexpresses adipocytic specific genes, including PPARγ, CEBPα, LPL and SREBP1c. Dasatinib also inhibits the activity of alkaline phosphatase, an osteogenic marker, and remarkably reduces matrix mineralization. The increase of PPARγ is also confirmed at protein level. The component of osteogenic medium required for dasatinib-induced adipogenesis is dexamethasone. Intriguingly, the increase of adipocytic markers is also observed in MSCs treated with dasatinib alone. The TKI effect is phenotype-specific, since fibroblasts do not undergo adipocytic differentiation or PPARγ increase. CONCLUSIONS: Our data demonstrate that dasatinib treatment affects bone marrow MSCs commitment and suggest that TKIs therapy might modify normal phenotypes with potential significant negative consequences
Dasatinib as a Bone-Modifying Agent: Anabolic and Anti-Resorptive Effects
This is an open-access article distributed under the terms of the Creative Commons Attribution License.-- et al.[Background]: Bone loss, in malignant or non-malignant diseases, is caused by increased osteoclast resorption and/or reduced osteoblast bone formation, and is commonly associated with skeletal complications. Thus, there is a need to identify new agents capable of influencing bone remodeling. We aimed to further pre-clinically evaluate the effects of dasatinib (BMS-354825), a multitargeted tyrosine kinase inhibitor, on osteoblast and osteoclast differentiation and function. [Methods]: For studies on osteoblasts, primary human bone marrow mensenchymal stem cells (hMSCs) together with the hMSC-TERT and the MG-63 cell lines were employed. Osteoclasts were generated from peripheral blood mononuclear cells (PBMC) of healthy volunteers. Skeletally-immature CD1 mice were used in the in vivo model. [Results]: Dasatinib inhibited the platelet derived growth factor receptor-β (PDGFR-β), c-Src and c-Kit phosphorylation in hMSC-TERT and MG-63 cell lines, which was associated with decreased cell proliferation and activation of canonical Wnt signaling. Treatment of MSCs from healthy donors, but also from multiple myeloma patients with low doses of dasatinib (2-5 nM), promoted its osteogenic differentiation and matrix mineralization. The bone anabolic effect of dasatinib was also observed in vivo by targeting endogenous osteoprogenitors, as assessed by elevated serum levels of bone formation markers, and increased trabecular microarchitecture and number of osteoblast-like cells. By in vitro exposure of hemopoietic progenitors to a similar range of dasatinib concentrations (1-2 nM), novel biological sequelae relative to inhibition of osteoclast formation and resorptive function were identified, including F-actin ring disruption, reduced levels of c-Fos and of nuclear factor of activated T cells 1 (NFATc1) in the nucleus, together with lowered cathepsin K, αVβ3 integrin and CCR1 expression. [Conclusions]: Low dasatinib concentrations show convergent bone anabolic and reduced bone resorption effects, which suggests its potential use for the treatment of bone diseases such as osteoporosis, osteolytic bone metastasis and myeloma bone disease. © 2012 Garcia-Gomez et al.This work was supported by grants from the Spanish Ministry of Science and Innovation – ISCIII (PI081825); Mutua Madrileña Medical Research Foundation (AP27262008); Centro en Red of Regenerative Medicine and Cellular Therapy from Castilla y León, ConsejerÃa de Sanidad JCyL – ISCIII; the Cooperative Research Thematic Network in Cancer (RTICC; RD06/0020/0006 and RD03/0020/0041); and Spanish FIS (PS09/01897). AG-G and CS are supported by the Centro en Red of Regenerative Medicine and Cellular Therapy from Castilla y León Project.Peer Reviewe
New and Fringe Residential Development and Emergency Medical Services Response Times in the United States
Much has been written over the years about longer emergency medical services (EMS) response times in rural areas as opposed to urban areas. Yet within urban areas, outside of case studies of certain cities, not much has been written about longer EMS response times in newer, fringe suburban or ex-urban areas. Examining first the largest county within each metro area and next the municipalities and unincorporated areas of all of the counties of metropolitan areas, the findings of this exploratory research note show that the density and age of different residential areas or jurisdictions explain some of the variation in average EMS response times between urban and suburban or ex-urban locations. Holding other things constant, those who live in more sparsely settled and newer developments tend to have longer waiting times for EMS. The implications for regional growth management are discussed