4 research outputs found

    Lorentz-covariant quantum mechanics and preferred frame

    Full text link
    In this paper the relativistic quantum mechanics is considered in the framework of the nonstandard synchronization scheme for clocks. Such a synchronization preserves Poincar{\'e} covariance but (at least formally) distinguishes an inertial frame. This enables to avoid the problem of a noncausal transmision of information related to breaking of the Bell's inequalities in QM. Our analysis has been focused mainly on the problem of existence of a proper position operator for massive particles. We have proved that in our framework such an operator exists for particles with arbitrary spin. It fulfills all the requirements: it is Hermitean and covariant, it has commuting components and moreover its eigenvectors (localised states) are also covariant. We have found the explicit form of the position operator and have demonstrated that in the preferred frame our operator coincides with the Newton--Wigner one. We have also defined a covariant spin operator and have constructed an invariant spin square operator. Moreover, full algebra of observables consisting of position operators, fourmomentum operators and spin operators is manifestly Poincar\'e covariant in this framework. Our results support expectations of other authors (Bell, Eberhard) that a consistent formulation of quantum mechanics demands existence of a preferred frame.Comment: 21 pages, LaTeX file, no figure

    Opportunities and challenges for fish culture in Brazilian reservoirs: a review

    No full text
    corecore