450 research outputs found
04441 Abstracts Collection -- Mobile Information Management
From 24.10.04 to 29.10.04, the
Dagstuhl Seminar 04441 ``Mobile Information Management\u27\u27 was held
in the International Conference and Research Center (IBFI),
Schloss Dagstuhl.
During the seminar, several participants presented their current
research, and ongoing work and open problems were discussed. Abstracts of
the presentations given during the seminar as well as abstracts of
seminar results and ideas are put together in this paper. The first section
describes the seminar topics and goals in general.
Links to extended abstracts or full papers are provided, if available
Using Permuted States of Validated Simulation to Analyze Conflict Rates in Optimistic Replication
Optimistic replication provides high data availability in the presence of network outages. Although widely deployed, this relaxed consistency model introduces concurrent updates, whose behavior is poorly understood due to the vast state space.
This paper introduces the notion of permuted states to eliminate system states that are redundant and unreachable, which can constitute the majority of states (4069 out of 4096 for four replicas). With the aid of permuted states, we are for the first time able to construct analytical models beyond the two-replica case. By examining the analysis for 2 to 4 replicas, we can demystify the process of forming identical conflicts—the most common conflict type at high replication factors. Additionally, we have automated and optimized the generation of permuted states, which allows us to explore higher replication factors (up to 10 replicas) using hybrid techniques. It also allows us to validate our results with existing simulations based on actual replication mechanisms, which previously were analytically validated with only one pair of replicas.
Finally, we have discovered that update locality and bimodal access patterns are the primary factors contributing to the formation of identical conflicts
Complete-Graph Tensor Network States: A New Fermionic Wave Function Ansatz for Molecules
We present a new class of tensor network states that are specifically
designed to capture the electron correlation of a molecule of arbitrary
structure. In this ansatz, the electronic wave function is represented by a
Complete-Graph Tensor Network (CGTN) ansatz which implements an efficient
reduction of the number of variational parameters by breaking down the
complexity of the high-dimensional coefficient tensor of a
full-configuration-interaction (FCI) wave function. We demonstrate that CGTN
states approximate ground states of molecules accurately by comparison of the
CGTN and FCI expansion coefficients. The CGTN parametrization is not biased
towards any reference configuration in contrast to many standard quantum
chemical methods. This feature allows one to obtain accurate relative energies
between CGTN states which is central to molecular physics and chemistry. We
discuss the implications for quantum chemistry and focus on the spin-state
problem. Our CGTN approach is applied to the energy splitting of states of
different spin for methylene and the strongly correlated ozone molecule at a
transition state structure. The parameters of the tensor network ansatz are
variationally optimized by means of a parallel-tempering Monte Carlo algorithm
Accurate ab initio spin densities
We present an approach for the calculation of spin density distributions for
molecules that require very large active spaces for a qualitatively correct
description of their electronic structure. Our approach is based on the
density-matrix renormalization group (DMRG) algorithm to calculate the spin
density matrix elements as basic quantity for the spatially resolved spin
density distribution. The spin density matrix elements are directly determined
from the second-quantized elementary operators optimized by the DMRG algorithm.
As an analytic convergence criterion for the spin density distribution, we
employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.
2011, 134, 224101] to build an accurate complete-active-space
configuration-interaction (CASCI) wave function from the optimized matrix
product states. The spin density matrix elements can then also be determined as
an expectation value employing the reconstructed wave function expansion.
Furthermore, the explicit reconstruction of a CASCI-type wave function provides
insights into chemically interesting features of the molecule under study such
as the distribution of - and -electrons in terms of Slater
determinants, CI coefficients, and natural orbitals. The methodology is applied
to an iron nitrosyl complex which we have identified as a challenging system
for standard approaches [J. Chem. Theory Comput. 2011, 7, 2740].Comment: 37 pages, 13 figure
Sequential decoupling of negative-energy states in Douglas-Kroll-Hess theory
Here, we review the historical development, current status, and prospects of
Douglas--Kroll--Hess theory as a quantum chemical relativistic electrons-only
theory.Comment: 15 page
Block-Diagonalization of Operators with Gaps, with Applications to Dirac Operators
We present new results on the block-diagonalization of Dirac operators on
three-dimensional Euclidean space with unbounded potentials. Classes of
admissible potentials include electromagnetic potentials with strong Coulomb
singularities and more general matrix-valued potentials, even non-self-adjoint
ones. For the Coulomb potential, we achieve an exact diagonalization up to
nuclear charge Z=124 and prove the convergence of the Douglas-Kroll-He\ss\
approximation up to Z=62, thus improving the upper bounds Z=93 and Z=51,
respectively, by H.\ Siedentop and E.\ Stockmeyer considerably. These results
follow from abstract theorems on perturbations of spectral subspaces of
operators with gaps, which are based on a method of H.\ Langer and C.\ Tretter
and are also of independent interest
Semi- and Non-relativistic Limit of the Dirac Dynamics with External Fields
We show how to approximate Dirac dynamics for electronic initial states by
semi- and non-relativistic dynamics. To leading order, these are generated by
the semi- and non-relativistic Pauli hamiltonian where the kinetic energy is
related to and , respectively. Higher-order
corrections can in principle be computed to any order in the small parameter
v/c which is the ratio of typical speeds to the speed of light. Our results
imply the dynamics for electronic and positronic states decouple to any order
in v/c << 1.
To decide whether to get semi- or non-relativistic effective dynamics, one
needs to choose a scaling for the kinetic momentum operator. Then the effective
dynamics are derived using space-adiabatic perturbation theory by Panati et. al
with the novel input of a magnetic pseudodifferential calculus adapted to
either the semi- or non-relativistic scaling.Comment: 42 page
Quantum information analysis of electronic states at different molecular structures
We have studied transition metal clusters from a quantum information theory
perspective using the density-matrix renormalization group (DMRG) method. We
demonstrate the competition between entanglement and interaction localization.
We also discuss the application of the configuration interaction based
dynamically extended active space procedure which significantly reduces the
effective system size and accelerates the speed of convergence for complicated
molecular electronic structures to a great extent. Our results indicate the
importance of taking entanglement among molecular orbitals into account in
order to devise an optimal orbital ordering and carry out efficient
calculations on transition metal clusters. We propose a recipe to perform DMRG
calculations in a black-box fashion and we point out the connections of our
work to other tensor network state approaches
Entanglement Measures for Single- and Multi-Reference Correlation Effects
Electron correlation effects are essential for an accurate ab initio
description of molecules. A quantitative a priori knowledge of the single- or
multi-reference nature of electronic structures as well as of the dominant
contributions to the correlation energy can facilitate the decision regarding
the optimum quantum chemical method of choice. We propose concepts from quantum
information theory as orbital entanglement measures that allow us to evaluate
the single- and multi-reference character of any molecular structure in a given
orbital basis set. By studying these measures we can detect possible artifacts
of small active spaces.Comment: 14 pages, 4 figure
- …