2,505 research outputs found

    Nonequilibrium Green's function theory for transport and gain properties of quantum cascade structures

    Full text link
    The transport and gain properties of quantum cascade (QC) structures are investigated using a nonequilibrium Green's function (NGF) theory which includes quantum effects beyond a Boltzmann transport description. In the NGF theory, we include interface roughness, impurity, and electron-phonon scattering processes within a self-consistent Born approximation, and electron-electron scattering in a mean-field approximation. With this theory we obtain a description of the nonequilibrium stationary state of QC structures under an applied bias, and hence we determine transport properties, such as the current-voltage characteristic of these structures. We define two contributions to the current, one contribution driven by the scattering-free part of the Hamiltonian, and the other driven by the scattering Hamiltonian. We find that the dominant part of the current in these structures, in contrast to simple superlattice structures, is governed mainly by the scattering Hamiltonian. In addition, by considering the linear response of the stationary state of the structure to an applied optical field, we determine the linear susceptibility, and hence the gain or absorption spectra of the structure. A comparison of the spectra obtained from the more rigorous NGF theory with simpler models shows that the spectra tend to be offset to higher values in the simpler theories.Comment: 44 pages, 16 figures, appearing in Physical Review B Dec 200

    Gain without inversion in a biased superlattice

    Full text link
    Intersubband transitions in a superlattice under homogeneous electric field is studied within the tight-binding approximation. Since the levels are equi-populated, the non-zero response appears beyond the Born approximation. Calculations are performed in the resonant approximation with scattering processes exactly taken into account. The absorption coefficient is equal zero for the resonant excitation while a negative absorption (gain without inversion) takes place below the resonance. A detectable gain in the THz spectral region is obtained for the low-doped GaAsGaAs-based superlattice and spectral dependencies are analyzed taking into account the interplay between homogeneous and inhomogeneous mechanisms of broadening.Comment: 6 pages, 4 figure

    Density-matrix theory of the optical dynamics and transport in quantum cascade structures: The role of coherence

    Full text link
    The impact of coherence on the nonlinear optical response and stationary transport is studied in quantum cascade laser structures. Nonequilibrium effects such as pump-probe signals, the spatio-temporally resolved electron density evolution, and the subband population dynamics (Rabi flopping) as well as the stationary current characteristics are investigated within a microscopic density-matrix approach. Focusing on the stationary current and the recently observed gain oscillations, it is found that the inclusion of coherence leads to observable coherent effects in opposite parameter regimes regarding the relation between the level broadening and the tunnel coupling across the main injection barrier. This shows that coherence plays a complementary role in stationary transport and nonlinear optical dynamics in the sense that it leads to measurable effects in opposite regimes. For this reason, a fully coherent consideration of such nonequilibrium structures is necessary to describe the combined optical and transport propertiesComment: 14 pages, 11 figures; final versio

    Polymer nanoparticle identification and concentration measurement using fiber-enhanced raman spectroscopy

    Get PDF
    We present a measurement technique for chemical identification and concentration measurement of polymer nanoparticles in aqueous solution, which is achieved using Raman spectroscopy. This work delivers an improvement in measurement sensitivity of 40 times over conventional Raman measurements in cuvettes by loading polymer nanoparticles into the hollow core of a microstructured optical fiber. We apply this "fiber-enhanced" system to measure the concentration of two separate samples of polystyrene particles (diameters of 60 nm and 120 nm respectively) with concentrations in the range from 0.07 to 0.5 mg/mL. The nanoliter volume formed by the fiber presents unique experimental conditions where nanoparticles are confined within the fiber core and prevented from diffusing outside the incident electromagnetic field, thereby enhancing their interaction. Our results suggest an upper limit on the size of particle that can be measured using the hollow-core photonic crystal fiber, as the increasing angular distribution of scattered light with particle size exceeds the acceptance angle of the liquid-filled fiber. We investigate parameters such as the fiber filling rate and optical properties of the filled fiber, with the aim to deliver repeatable and quantifiable measurements. This study thereby aids the on-going process to create compact systems that can be integrated into nanoparticle production settings for in-line measurements

    Microbial Succession in Spontaneously Fermented Grape Must Before, During and After Stuck Fermentation

    Get PDF
    The microbial succession in spontaneously fermenting Riesling must was investigated from the beginning(pressing) until the end (sulphuring) of the fermentation in two harvest years (2008 and 2009) at a Mosellewinery (Germany). In both years, the fermentation was interrupted by a stuck period. The length of thestuck period varied considerably (20 weeks in 2008 and one week in 2009). Different yeasts (Candida,Debaryomyces, Pichia, Hanseniaspora, Saccharomyces, Metschnikowia, Cryptococcus, Filobasidium andRhodotorula) and bacteria (Gluconobacter, Asaia, Acetobacter, Oenococcus, Lactobacillus, Bacillus andPaenibacillus) were isolated successively by plating. The main fermenting organism was Saccharomycesuvarum. Specific primers were developed for S. uvarum, H. uvarum and C. boidinii, followed by thedetermination of the total cell counts with qPCR. The initial glucose concentration differed between thetwo years and was 116 g/L in 2008 and 85.4 g/L in 2009. Also, the fructose concentrations were differentin both years (114 g/L in 2008 and 77.8 g/L in 2009). The stuck period appeared when the glucose/fructoseratio was 0.34 and 0.12 respectively. The microbiota changed during the stuck period

    Intersubband gain in a Bloch oscillator and Quantum cascade laser

    Full text link
    The link between the inversion gain of quantum cascade structures and the Bloch gain in periodic superlattices is presented. The proposed theoretical model based on the density matrix formalism is able to treat the gain mechanism of the Bloch oscillator and Quantum cascade laser on the same footing by taking into account in-plane momentum relaxation. The model predicts a dispersive contribution in addition to the (usual) population-inversion-dependent intersubband gain in quantum cascade structures and - in the absence of inversion - provides the quantum mechanical description for the dispersive gain in superlattices. It corroborates the predictions of the semi-classical miniband picture, according to which gain is predicted for photon energies lower than the Bloch oscillation frequency, whereas net absorption is expected at higher photon energies, as a description which is valid in the high-temperature limit. A red-shift of the amplified emission with respect to the resonant transition energy results from the dispersive gain contribution in any intersubband transition, for which the population inversion is small.Comment: 10 pages, 6 figure

    Inelastic quantum transport in superlattices: success and failure of the Boltzmann equation

    Get PDF
    Electrical transport in semiconductor superlattices is studied within a fully self-consistent quantum transport model based on nonequilibrium Green functions, including phonon and impurity scattering. We compute both the drift velocity-field relation and the momentum distribution function covering the whole field range from linear response to negative differential conductivity. The quantum results are compared with the respective results obtained from a Monte Carlo solution of the Boltzmann equation. Our analysis thus sets the limits of validity for the semiclassical theory in a nonlinear transport situation in the presence of inelastic scattering.Comment: final version with minor changes, to appear in Physical Review Letters, sceduled tentatively for July, 26 (1999

    The Dark Matter at the End of the Galaxy

    Full text link
    Dark matter density profiles based upon Lambda-CDM cosmology motivate an ansatz velocity distribution function with fewer high velocity particles than the Maxwell-Boltzmann distribution or proposed variants. The high velocity tail of the distribution is determined by the outer slope of the dark matter halo, the large radius behavior of the Galactic dark matter density. N-body simulations of Galactic halos reproduce the high velocity behavior of this ansatz. Predictions for direct detection rates are dramatically affected for models where the threshold scattering velocity is within 30% of the escape velocity.Comment: 10 pages, 5 figure

    Electrically tunable GHz oscillations in doped GaAs-AlAs superlattices

    Full text link
    Tunable oscillatory modes of electric-field domains in doped semiconductor superlattices are reported. The experimental investigations demonstrate the realization of tunable, GHz frequencies in GaAs-AlAs superlattices covering the temperature region from 5 to 300 K. The orgin of the tunable oscillatory modes is determined using an analytical and a numerical modeling of the dynamics of domain formation. Three different oscillatory modes are found. Their presence depends on the actual shape of the drift velocity curve, the doping density, the boundary condition, and the length of the superlattice. For most bias regions, the self-sustained oscillations are due to the formation, motion, and recycling of the domain boundary inside the superlattice. For some biases, the strengths of the low and high field domain change periodically in time with the domain boundary being pinned within a few quantum wells. The dependency of the frequency on the coupling leads to the prediction of a new type of tunable GHz oscillator based on semiconductor superlattices.Comment: Tex file (20 pages) and 16 postscript figure

    Effects of impurity scattering on electron-phonon resonances in semiconductor superlattice high-field transport

    Full text link
    A non-equilibrium Green's function method is applied to model high-field quantum transport and electron-phonon resonances in semiconductor superlattices. The field-dependent density of states for elastic (impurity) scattering is found non-perturbatively in an approach which can be applied to both high and low electric fields. I-V curves, and specifically electron-phonon resonances, are calculated by treating the inelastic (LO phonon) scattering perturbatively. Calculations show how strong impurity scattering suppresses the electron-phonon resonance peaks in I-V curves, and their detailed sensitivity to the size, strength and concentration of impurities.Comment: 7 figures, 1 tabl
    corecore