1 research outputs found
Analysis of dynamical corrections to baryon magnetic moments
We present and analyze QCD corrections to the baryon magnetic moments in
terms of the one-, two-, and three-body operators which appear in the effective
field theory developed in our recent papers. The main corrections are extended
Thomas-type corrections associated with the confining interactions in the
baryon. We investigate the contributions of low-lying angular excitations to
the moments quantitatively and show that they are completely negligible. When
the QCD corrections are combined with the non-quark model contributions of the
meson loops, we obtain a model which describes the moments within a mean
deviation of 0.04 . The nontrivial interplay of the two types of
corrections to the quark-model moments is analyzed in detail, and explains why
the quark model is so successful. In the course of these calculations, we
parametrize the general spin structure of the baryon wave functions
in a form which clearly displays the symmetry properties and the internal
angular momentum content of the wave functions, and allows us to use spin-trace
methods to calculate the many spin matrix elements which appear in the
expressions for the moments. This representation may be useful elsewhere.Comment: 32 pages, 3 figures, submitted to Phys. Rev.