38,714 research outputs found
Conductivity of suspended and non-suspended graphene at finite gate voltage
We compute the DC and the optical conductivity of graphene for finite values
of the chemical potential by taking into account the effect of disorder, due to
mid-gap states (unitary scatterers) and charged impurities, and the effect of
both optical and acoustic phonons. The disorder due to mid-gap states is
treated in the coherent potential approximation (CPA, a self-consistent
approach based on the Dyson equation), whereas that due to charged impurities
is also treated via the Dyson equation, with the self-energy computed using
second order perturbation theory. The effect of the phonons is also included
via the Dyson equation, with the self energy computed using first order
perturbation theory. The self-energy due to phonons is computed both using the
bare electronic Green's function and the full electronic Green's function,
although we show that the effect of disorder on the phonon-propagator is
negligible. Our results are in qualitative agreement with recent experiments.
Quantitative agreement could be obtained if one assumes water molelcules under
the graphene substrate. We also comment on the electron-hole asymmetry observed
in the DC conductivity of suspended graphene.Comment: 13 pages, 11 figure
Algebraic solution of a graphene layer in a transverse electric and perpendicular magnetic fields
We present an exact algebraic solution of a single graphene plane in
transverse electric and perpendicular magnetic fields. The method presented
gives both the eigen-values and the eigen-functions of the graphene plane. It
is shown that the eigen-states of the problem can be casted in terms of
coherent states, which appears in a natural way from the formalism.Comment: 11 pages, 5 figures, accepted for publication in Journal of Physics
Condensed Matte
Conductance quantization and transport gap in disordered graphene nanoribbons
We study numerically the effects of edge and bulk disorder on the conductance
of graphene nanoribbons. We compute the conductance suppression due to
localization induced by edge scattering. We find that even for weak edge
roughness, conductance steps are suppressed and transport gaps appear. These
gaps are approximately inversely proportional to the nanoribbon width. On/off
conductance ratios grow exponentially with the nanoribbon length. Our results
impose severe limitations to the use of graphene in ballistic nanowires.Comment: 5 pages, 7 figures; references added, typos fixed, to appear in Phys.
Rev
Bilayer graphene: gap tunability and edge properties
Bilayer graphene -- two coupled single graphene layers stacked as in graphite
-- provides the only known semiconductor with a gap that can be tuned
externally through electric field effect. Here we use a tight binding approach
to study how the gap changes with the applied electric field. Within a parallel
plate capacitor model and taking into account screening of the external field,
we describe real back gated and/or chemically doped bilayer devices. We show
that a gap between zero and midinfrared energies can be induced and externally
tuned in these devices, making bilayer graphene very appealing from the point
of view of applications. However, applications to nanotechnology require
careful treatment of the effect of sample boundaries. This being particularly
true in graphene, where the presence of edge states at zero energy -- the Fermi
level of the undoped system -- has been extensively reported. Here we show that
also bilayer graphene supports surface states localized at zigzag edges. The
presence of two layers, however, allows for a new type of edge state which
shows an enhanced penetration into the bulk and gives rise to band crossing
phenomenon inside the gap of the biased bilayer system.Comment: 8 pages, 3 fugures, Proceedings of the International Conference on
Theoretical Physics: Dubna-Nano200
Effects of a mixed vector-scalar kink-like potential for spinless particles in two-dimensional spacetime
The intrinsically relativistic problem of spinless particles subject to a
general mixing of vector and scalar kink-like potentials () is investigated. The problem is mapped into the exactly solvable
Surm-Liouville problem with the Rosen-Morse potential and exact bounded
solutions for particles and antiparticles are found. The behaviour of the
spectrum is discussed in some detail. An apparent paradox concerning the
uncertainty principle is solved by recurring to the concept of effective
Compton wavelength.Comment: 13 pages, 4 figure
Non-linear excitations in 1D correlated insulators
In this work we investigate charge transport in one-dimensional (1D)
insulators via semi-classical and perturbative renormalization group (RG)
methods. We consider the problem of electron-electron, electron-phonon and
electron-two-level system interactions. We show that non-linear collective
modes such as polarons and solitons are reponsible for transport. We find a new
excitation in the Mott insulator: the polaronic soliton. We discuss the
differences between band and Mott insulators in terms of their spin spectrum
and obtain the charge and spin gaps in each one of these systems. We show that
electron-electron interactions provide strong renormalizations of the energy
scales in the problem.Comment: 29 page
- …