2 research outputs found
Simultaneous estimation of hydro-dipersive parameters using a new modified levenberg-marquardt algorithm
Determination of soil hydrodynamic parameters at field scale is of great importance for modeling soil water dynamics and for agricultural water management. The direct estimation of those parameters is time-consuming and afflicted with serious uncertainties. Inverse modeling is known to get efficient technique for solving non-linear problems in hydrology. Levenberg–Marquardt (LM) algorithm is a gradient-based method, which has been widely used for solving inverse soil water flow problems. In the LM algorithm, sensitivity coefficients are mainly evaluated by numerical differentiation methods. However, sensitivity coefficients are difficult to be precisely calculated by numerical differentiation methods, if transient states and non-linearities are involved. In this paper, a new approach is proposed for sensitivity analysis using the complex variabledifferentiation method (CVDM) to estimate simultaneously the hydraulic and dispersive properties of unsaturated soil from in-situ experiments. In this approach, the sensitivity coefficients can be determined in a more accurate way than the traditional finite difference method. The results show that the new inverse analysis method in the present work has high accuracy, validity, uniqueness and higher inversion efficiency, compared with the previous least-squares method. The simulated and measured water contents and tracer concentration were generally close. Overall, it was concluded that the CVDM is a promising method to estimate hydro-dispersive parameters in the unsaturated zone
Investigational methods for the modeling of infiltration process in the soil and the estimating the soil hydrodynamic parameters
Unsaturated zone in the soil generally plays an important role in the transfer of water and pollutants in the underground environment. In this context, the determination of the hydrodynamic parameters constitutes an essential step for any study of transfers of water and solutes in the unsaturated zone. The purpose of this article is the estimation the soil hydrodynamic parameters by the direct method and the inverse method, from the infiltration data by using the disc infiltrometer in the soil the basin Loukkos located in northern Morocco. Our results the numerical modeling reproduced correctly the experimental measurements. These results show that the inverse method remains a robust and accurate method for determining the soil hydrodynamic parameters compared to other conventional methods