94,207 research outputs found
The Spin Stiffness and the Transverse Susceptibility of the Half-filled Hubbard Model
The spin stiffness and the transverse susceptibility of the square lattice half-filled Hubbard model are calculated as a
function of the Hubbard parameter ratio by series expansions around the
Ising limit. We find that the calculated spin-stiffness, transverse
susceptibility, and sublattice magnetization for the Hubbard model smoothly
approach the Heisenberg values for large . The results are compared for
different with RPA and other numerical studies.Comment: 9 Revtex pages, 3 Postscript figures, Europhys. Lett. in pres
Numerical simulations of negative-index refraction in wedge-shaped metamaterials
A wedge-shaped structure made of split-ring resonators (SRR) and wires is
numerically simulated to evaluate its refraction behavior. Four frequency
bands, namely, the stop band, left-handed band, ultralow-index band, and
positive-index band, are distinguished according to the refracted field
distributions. Negative phase velocity inside the wedge is demonstrated in the
left-handed band and the Snell's law is conformed in terms of its refraction
behaviors in different frequency bands. Our results confirmed that negative
index of refraction indeed exists in such a composite metamaterial and also
provided a convincing support to the results of previous Snell's law
experiments.Comment: 18 pages, 6 figure
Time-dependent Fr\"ohlich transformation approach for two-atom entanglement generated by successive passage through a cavity
Time-dependent Fr\"ohlich transformations can be used to derive an effective
Hamiltonian for a class of quantum systems with time-dependent perturbations.
We use such a transformation for a system with time-dependent atom-photon
coupling induced by the classical motion of two atoms in an inhomogeneous
electromagnetic field. We calculate the entanglement between the two atoms
resulting from their motion through a cavity as a function of their initial
position difference and velocity.Comment: 7 pages, 3 figure
Community detection in multiplex networks using locally adaptive random walks
Multiplex networks, a special type of multilayer networks, are increasingly
applied in many domains ranging from social media analytics to biology. A
common task in these applications concerns the detection of community
structures. Many existing algorithms for community detection in multiplexes
attempt to detect communities which are shared by all layers. In this article
we propose a community detection algorithm, LART (Locally Adaptive Random
Transitions), for the detection of communities that are shared by either some
or all the layers in the multiplex. The algorithm is based on a random walk on
the multiplex, and the transition probabilities defining the random walk are
allowed to depend on the local topological similarity between layers at any
given node so as to facilitate the exploration of communities across layers.
Based on this random walk, a node dissimilarity measure is derived and nodes
are clustered based on this distance in a hierarchical fashion. We present
experimental results using networks simulated under various scenarios to
showcase the performance of LART in comparison to related community detection
algorithms
Variable - temperature scanning optical and force microscope
The implementation of a scanning microscope capable of working in confocal,
atomic force and apertureless near field configurations is presented. The
microscope is designed to operate in the temperature range 4 - 300 K, using
conventional helium flow cryostats. In AFM mode, the distance between the
sample and an etched tungsten tip is controlled by a self - sensing
piezoelectric tuning fork. The vertical position of both the AFM head and
microscope objective can be accurately controlled using piezoelectric coarse
approach motors. The scanning is performed using a compact XYZ stage, while the
AFM and optical head are kept fixed, allowing scanning probe and optical
measurements to be acquired simultaneously and in concert. The free optical
axis of the microscope enables both reflection and transmission experiments to
be performed.Comment: 24 pages, 9 figures, submitted to the journal "Review of Scientific
Instruments
- …