5,741 research outputs found

    Global surfaces of section in the planar restricted 3-body problem

    Get PDF
    The restricted planar three-body problem has a rich history, yet many unanswered questions still remain. In the present paper we prove the existence of a global surface of section near the smaller body in a new range of energies and mass ratios for which the Hill's region still has three connected components. The approach relies on recent global methods in symplectic geometry and contrasts sharply with the perturbative methods used until now.Comment: 11 pages, 1 figur

    Algebraic Torsion in Contact Manifolds

    Full text link
    We extract a nonnegative integer-valued invariant, which we call the "order of algebraic torsion", from the Symplectic Field Theory of a closed contact manifold, and show that its finiteness gives obstructions to the existence of symplectic fillings and exact symplectic cobordisms. A contact manifold has algebraic torsion of order zero if and only if it is algebraically overtwisted (i.e. has trivial contact homology), and any contact 3-manifold with positive Giroux torsion has algebraic torsion of order one (though the converse is not true). We also construct examples for each nonnegative k of contact 3-manifolds that have algebraic torsion of order k but not k - 1, and derive consequences for contact surgeries on such manifolds. The appendix by Michael Hutchings gives an alternative proof of our cobordism obstructions in dimension three using a refinement of the contact invariant in Embedded Contact Homology.Comment: 53 pages, 4 figures, with an appendix by Michael Hutchings; v.3 is a final update to agree with the published paper, and also corrects a minor error that appeared in the published version of the appendi

    A room temperature 19-channel magnetic field mapping device for cardiac signals

    Full text link
    We present a multichannel cardiac magnetic field imaging system built in Fribourg from optical double-resonance Cs vapor magnetometers. It consists of 25 individual sensors designed to record magnetic field maps of the beating human heart by simultaneous measurements on a grid of 19 points over the chest. The system is operated as an array of second order gradiometers using sophisticated digitally controlled feedback loops.Comment: 3 pages, 3 figures, submitted to Applied Physics Letter

    Incoherent Transport through Molecules on Silicon in the vicinity of a Dangling Bond

    Get PDF
    We theoretically study the effect of a localized unpaired dangling bond (DB) on occupied molecular orbital conduction through a styrene molecule bonded to a n++ H:Si(001)-(2x1) surface. For molecules relatively far from the DB, we find good agreement with the reported experiment using a model that accounts for the electrostatic contribution of the DB, provided we include some dephasing due to low lying phonon modes. However, for molecules within 10 angstrom to the DB, we have to include electronic contribution as well along with higher dephasing to explain the transport features.Comment: 9 pages, 5 figure

    Studies of Electron-Beam Penetration and Free-Carrier Generation in Diamond Films

    Get PDF
    Experimental observations of the energy‐dependent electron‐beam penetration in type II‐A natural diamond are reported. The experimental data are compared with results obtained from numerical Monte Carlo simulations, and the results are in very good agreement. The results also reveal that a threshold energy of about 125 keV is necessary for complete penetration for a 35 μm sample. It is found that over the 30–180 keV range, the energy dependence of the penetration depth and total path length exhibits a power‐law relation. Monte Carlo simulations have also been performed to investigate the excess carrier‐generation profiles within diamond for a set of incident e‐beam energy distributions. The simulation results demonstrate the feasibility of tailoring the internal source function, and hence influencing the diffusion currents, the internal electric fields, and charge injection through the contacts

    An exact sequence for contact- and symplectic homology

    Full text link
    A symplectic manifold WW with contact type boundary M=WM = \partial W induces a linearization of the contact homology of MM with corresponding linearized contact homology HC(M)HC(M). We establish a Gysin-type exact sequence in which the symplectic homology SH(W)SH(W) of WW maps to HC(M)HC(M), which in turn maps to HC(M)HC(M), by a map of degree -2, which then maps to SH(W)SH(W). Furthermore, we give a description of the degree -2 map in terms of rational holomorphic curves with constrained asymptotic markers, in the symplectization of MM.Comment: Final version. Changes for v2: Proof of main theorem supplemented with detailed discussion of continuation maps. Description of degree -2 map rewritten with emphasis on asymptotic markers. Sec. 5.2 rewritten with emphasis on 0-dim. moduli spaces. Transversality discussion reorganized for clarity (now Remark 9). Various other minor modification

    Isotope effects in underdoped cuprate superconductors: a quantum phenomenon

    Full text link
    We show that the unusual doping dependence of the isotope effects on transition temperature and zero temperature in - plane penetration depth naturally follows from the doping driven 3D-2D crossover, the 2D quantum superconductor to insulator transition (QSI) in the underdoped limit and the change of the relative doping concentration upon isotope substitution. Close to the QSI transition both, the isotope coefficient of transition temperature and penetration depth approach the coefficient of the relative dopant concentration, and its divergence sets the scale. These predictions are fully consistent with the experimental data and imply that close to the underdoped limit the unusual isotope effect on transition temperature and penetration depth uncovers critical phenomena associated with the quantum superconductor to insulator transition in two dimensions.Comment: 6 pages, 3 figure

    Studies of High Field Conduction in Diamond for Electron Beam Controlled Switching

    Get PDF
    Experimental studies on a vertical metal‐diamond‐silicon switch structure have been conducted for potential pulsed power applications. Both the dc current‐voltage characteristics and the transient switching response have been measured for a range of voltages. With a 1 μm diamond film, the switch has been seen to withstand electric fields up to 1.8 MV/cm. Our results show a polarity dependence which can be associated with current injection at the asymmetric contacts. Polarity effects were also observed in the presence of e‐beam excitation, and arise due to nonuniform carrier generation near the diamond‐silicon interface. Our switching transients were seen to follow the shape of the e‐beam for a negative bias at the silicon substrate. For positive voltage values exceeding about 80 V however, the switch is seen to go into a persistent‐photocurrent mode. This effect is a result of free carrier trapping within diamond and is enhanced by the double injection process

    Chemical ordering and composition fluctuations at the (001) surface of the Fe-Ni Invar alloy

    Full text link
    We report on a study of (001) oriented fcc Fe-Ni alloy surfaces which combines first-principles calculations and low-temperature STM experiments. Density functional theory calculations show that Fe-Ni alloy surfaces are buckled with the Fe atoms slightly shifted outwards and the Ni atoms inwards. This is consistent with the observation that the atoms in the surface layer can be chemically distinguished in the STM image: brighter spots (corrugation maxima with increased apparent height) indicate iron atoms, darker ones nickel atoms. This chemical contrast reveals a c2x2 chemical order (50% Fe) with frequent Fe-rich defects on Invar alloy surface. The calculations also indicate that subsurface composition fluctuations may additionally modulate the apparent height of the surface atoms. The STM images show that this effect is pronounced compared to the surfaces of other disordered alloys, which suggests that some chemical order and corresponding concentration fluctuations exist also in the subsurface layers of Invar alloy. In addition, detailed electronic structure calculations allow us to identify the nature of a distinct peak below the Fermi level observed in the tunneling spectra. This peak corresponds to a surface resonance band which is particularly pronounced in iron-rich surface regions and provides a second type of chemical contrast with less spatial resolution but one that is essentially independent of the subsurface composition.Comment: 7 pages, 5 figure

    Bott periodicity and stable quantum classes

    Full text link
    We use Bott periodicity to relate previously defined quantum classes to certain "exotic Chern classes" on BUBU. This provides an interesting computational and theoretical framework for some Gromov-Witten invariants connected with cohomological field theories. This framework has applications to study of higher dimensional, Hamiltonian rigidity aspects of Hofer geometry of CPn \mathbb{CP} ^{n}, one of which we discuss here.Comment: prepublication versio
    corecore