8,230 research outputs found

    Enhanced conversion efficiency for harmonic generation with double resonance

    Get PDF
    Conversion efficiency for cw harmonic generation is calculated for the situation in which both fundamental and harmonic waves are resonant. Compared with the situation of a singly resonant cavity at the fundamental, the doubly resonant geometry can lead to an increase of the effective nonlinear coefficient. High conversion efficiency can thus be achieved with nonlinear crystals of relatively low nonlinear coefficient. and with modest pump power for the fundamental input

    From first-order magneto-elastic to magneto-structural transition in (Mn,Fe)1.95P0.50Si0.50 compounds

    Full text link
    We report on structural, magnetic and magnetocaloric properties of MnxFe1.95-xP0.50Si0.50 (x > 1.10) compounds. With increasing the Mn:Fe ratio, a first-order magneto-elastic transition gradually changes into a first-order magneto-structural transition via a second-order magnetic transition. The study also shows that thermal hysteresis can be tuned by varying the Mn:Fe ratio. Small thermal hysteresis (less than 1 K) can be obtained while maintaining a giant magnetocaloric effect. This achievement paves the way for real refrigeration applications using magnetic refrigerants.Comment: 4 pages, 3 figures, Supplemental Materia

    Capture on High Curvature Region: Aggregation of Colloidal Particle Bound to Giant Phospholipid Vesicles

    Full text link
    A very recent observation on the membrane mediated attraction and ordered aggregation of colloidal particles bound to giant phospholipid vesicles (I. Koltover, J. O. R\"{a}dler, C. R. Safinya, Phys. Rev. Lett. {\bf 82}, 1991(1999)) is investigated theoretically within the frame of Helfrich curvature elasticity theory of lipid bilayer fluid membrane. Since the concave or waist regions of the vesicle possess the highest local bending energy density, the aggregation of colloidal beads on these places can reduce the elastic energy in maximum. Our calculation shows that a bead in the concave region lowers its energy ∼20kBT\sim 20 k_B T. For an axisymmetrical dumbbell vesicle, the local curvature energy density along the waist is equally of maximum, the beads can thus be distributed freely with varying separation distance.Comment: 12 pages, 2 figures. REVte

    Spheres and Prolate and Oblate Ellipsoids from an Analytical Solution of Spontaneous Curvature Fluid Membrane Model

    Full text link
    An analytic solution for Helfrich spontaneous curvature membrane model (H. Naito, M.Okuda and Ou-Yang Zhong-Can, Phys. Rev. E {\bf 48}, 2304 (1993); {\bf 54}, 2816 (1996)), which has a conspicuous feature of representing the circular biconcave shape, is studied. Results show that the solution in fact describes a family of shapes, which can be classified as: i) the flat plane (trivial case), ii) the sphere, iii) the prolate ellipsoid, iv) the capped cylinder, v) the oblate ellipsoid, vi) the circular biconcave shape, vii) the self-intersecting inverted circular biconcave shape, and viii) the self-intersecting nodoidlike cylinder. Among the closed shapes (ii)-(vii), a circular biconcave shape is the one with the minimum of local curvature energy.Comment: 11 pages, 11 figures. Phys. Rev. E (to appear in Sept. 1999

    Large deformation of spherical vesicle studied by perturbation theory and Surface evolver

    Full text link
    With tangent angle perturbation approach the axial symmetry deformation of a spherical vesicle in large under the pressure changes is studied by the elasticity theory of Helfrich spontaneous curvature model.Three main results in axial symmetry shape: biconcave shape, peanut shape, and one type of myelin are obtained. These axial symmetry morphology deformations are in agreement with those observed in lipsome experiments by dark-field light microscopy [Hotani, J. Mol. Biol. 178, (1984) 113] and in the red blood cell with two thin filaments (myelin) observed in living state (see, Bessis, Living Blood Cells and Their Ultrastructure, Springer-Verlag, 1973). Furthermore, the biconcave shape and peanut shape can be simulated with the help of a powerful software, Surface Evolver [Brakke, Exp. Math. 1, 141 (1992) 141], in which the spontaneous curvature can be easy taken into account.Comment: 16 pages, 6 EPS figures and 2 PS figure
    • …
    corecore