2 research outputs found
Every Large Point Set contains Many Collinear Points or an Empty Pentagon
We prove the following generalised empty pentagon theorem: for every integer
, every sufficiently large set of points in the plane contains
collinear points or an empty pentagon. As an application, we settle the
next open case of the "big line or big clique" conjecture of K\'ara, P\'or, and
Wood [\emph{Discrete Comput. Geom.} 34(3):497--506, 2005]