708 research outputs found
Theoretical study of electronic Raman scattering of Borocarbide superconductors
The electronic Raman scattering of Borocarbide superconductors is studied
based on the weak coupling theory with -wave gap symmetry. The low energy
behaviors and the relative peak positions can be naturally understood, while
the explanation of the detailed shape of the peak seems to require a
strong inelastic interaction not present in the weak coupling theory.Comment: Revtex 4 file, 9 pages and 5 figure
Dispersive Gap Mode of Phonons in Anisotropic Superconductors
We estimate the effect of the superconducting gap anisotropy in the
dispersive gap mode of phonons, which is observed by the neutron scattering on
borocarbide superconductors. We numerically analyze the phonon spectrum
considering the electron-phonon coupling, and examine contributions coming from
the gap suppression and the sign change of the pairing function on the Fermi
surface. When the sign of the pairing function is changed by the nesting
translation, the gap mode does not appear. We also discuss the suppression of
the phonon softening of the Kohn anomaly due to the onset of superconductivity.
We demonstrate that observation of the gap dispersive mode is useful for
sorting out the underlying superconducting pairing function.Comment: 7 pages, 12 figures, to be published in J. Phys. Soc. Jp
Violation of the isotropic- approximation in overdoped La_{2-x}Sr_xCuO_4
Magnetotransport measurements on the overdoped cuprate La_{1.7}Sr_{0.3}CuO_4
are fitted using the Ong construction and band parameters inferred from
angle-resolved photoemission. Within a band picture, the low temperature Hall
data can only be fitted satisfactorily by invoking strong basal-plane
anisotropy in the mean-free-path . This violation of the isotropic-
approximation supports a picture of dominant small-angle elastic scattering in
cuprates due to out-of-plane substitutional disorder. We show that both band
anisotropy and anisotropy in the elastic scattering channel strongly
renormalize the Hall coefficient in overdoped La_{2-x}Sr_xCuO_4 over a wide
doping and temperature range.Comment: 4 pages, 4 figure
Fulde-Ferrell-Larkin-Ovchinnikov state in a perpendicular field of quasi two-dimensional CeCoIn5
A Fulde-Ferrell-Larkin-Ovchinnkov (FFLO) state was previously reported in the
quasi-2D heavy fermion CeCoIn5 when a magnetic field was applied parallel to
the ab-plane. Here, we conduct 115^In NMR studies of this material in a
PERPENDICULAR field, and provide strong evidence for FFLO in this case as well.
Although the topology of the phase transition lines in the H-T phase diagram is
identical for both configurations, there are several remarkable differences
between them. Compared to H//ab, the FFLO region for H perpendicular to the
ab-plane shows a sizable decrease, and the critical field separating the FFLO
and non-FFLO superconducting states almost ceases to have a temperature
dependence. Moreover, directing H perpendicular to the ab-plane results in a
notable change in the quasiparticle excitation spectrum within the planar node
associated with the FFLO transition.Comment: 5 pages, 3 figure
Josephson effect in a weak link between borocarbides
A stationary Josephson effect is analyzed theoretically for a weak link
between borocarbide superconductors. It is shown that different models of the
order parameter result in qualitatively different current-phase relations
Orbital Degeneracy and Peierls Instability in Triangular Lattice Superconductor IrPtTe
We have studied electronic structure of triangular lattice
IrPtTe superconductor using photoemission spectroscopy and
model calculations. Ir core-level photoemission spectra show that Ir
charge modulation established in the low temperature phase of IrTe
is suppressed by Pt doping. This observation indicates that the suppression of
charge modulation is related to the emergence of superconductivity.
Valence-band photoemission spectra of IrTe suggest that the Ir charge
modulation is accompanied by Ir orbital reconstruction. Based on the
photoemission results and model calculations, we argue that the
orbitally-induced Peierls effect governs the charge and orbital instability in
the IrPtTe.Comment: 5 pages,4 figure
Spins in the Vortices of a High Temperature Superconductor
Neutron scattering is used to characterise the magnetism of the vortices for
the optimally doped high-temperature superconductor La(2-x)Sr(x)CuO(4)
(x=0.163) in an applied magnetic field. As temperature is reduced, low
frequency spin fluctuations first disappear with the loss of vortex mobility,
but then reappear. We find that the vortex state can be regarded as an
inhomogeneous mixture of a superconducting spin fluid and a material containing
a nearly ordered antiferromagnet. These experiments show that as for many other
properties of cuprate superconductors, the important underlying microscopic
forces are magnetic
- …