20 research outputs found
Modeling the power flow in normal conductor-insulator-superconductor junctions
Normal conductor-insulator-superconductor (NIS) junctions promise to be interesting for x-ray and phonon sensing applications, in particular due to the expected self-cooling of the N electrode by the tunneling current. Such cooling would enable the operation of the active element of the sensor below the cryostat temperature and at a correspondingly higher sensitivity. It would also allow the use of MS junctions as microcoolers. At present, this cooling has not been realized in large area junctions (suitable for a number of detector applications). In this article, we discuss a detailed modeling of the heat flow in such junctions; we show how the heat flow into the normal electrode by quasiparticle back-tunneling and phonon absorption from quasiparticle pair recombination can overcompensate the cooling power. This provides a microscopic explanation of the self-heating effects we observe in our large area NIS junctions. The model suggests a number of possible solutions
Low temperature gamma-ray spectrometers based on bulk superconducting and dielectric absorber crystals]
Recommended from our members
Low temperature y-ray spectrometers based on bulk superconducting and dielectric absorber crystals
Many areas of research rely on the detection of radiation, in the form of single photons or particles. By measuring the photons or particles coming from an object a lot can be learned about the object under study. In some cases there is a simple need to know the number of photons coming from the source. In cases like this a simple counter, like a Geiger-Mueller survey meter, will suffice. In other cases one want to know the spectral distribution of the photons coming from the source. In cases like that a spectrometer is needed that can distinguish between photons with different energies, like a diffraction or transmission grating. The work presented in this thesis focused on the development of a new generation broad band spectrometer that has a high energy resolving power, combined with a high absorption efficiency for photon energies above 10 keV and up to 500 keV. The spectrometers we are developing are based on low-temperature sensors, like superconducting tunnel junctions or transition edge sensors, that are coupled to bulk absorber crystals. We use the low-temperature sensors because they can offer a significant improvement in energy resolving power, compared to conventional spectrometers. We couple the low-temperature sensors to bulk absorber crystals to increase the absorption efficiency. In this chapter I introduce different types of radiation detectors and spectrometers and areas where they are being used. I also discuss the history and motivation of low-temperature spectrometers and show some of the impressive results that have been achieved in this field over the last few years. Finally I discuss the outline of this thesis
Recommended from our members
Hot-Electron Tunneling sensors for high-resolution x-ray and gamma-ray spectroscopy
Over the past 2 years, we have been studying the use of Hot Electron Tunneling sensors for use in high-energy-resolution x-ray and gamma-ray spectrometers. These sensors promise several advantages over existing cryogenic sensors, including simultaneous high count rate and high resolution capability, and relative ease of use. Using simple shadow mask lithography, we verified the basic principles of operation of these devices and discovered new physics in their thermal behavior as a function applied voltage bias. We also began to develop ways to use this new sensor in practical x-ray and gamma-ray detectors based on superconducting absorbers. This requires the use of quasiparticle trapping to concentrate the signal in the sensing elements
Analysis of pulse shape from a high-resolution superconducting tunnel junction X-ray spectrometer
Recommended from our members
Proximity effect and hot-electron diffusion in Ag/Al{sub 2}O{sub 3}/Al tunnel junctions
We have fabricated Ag/Al{sub 2}O{sub 3}/Al tunnel junctions on Si substrates using a new process. This process was developed to fabricate superconducting tunnel junctions (STJs) on the surface of a superconductor. These junctions allow us to study the proximity effect of a superconducting Al film on a normal metal trapping layer. In addition, these devices allow us to measure the hot-electron diffusion constant using a single junction. Lastly these devices will help us optimize the design and fabrication of tunnel junctions on the surface of high-Z, ultra-pure superconducting crystals. 5 refs., 8 figs
Recommended from our members
Low-energy response of superconducting tunnel junction x-ray spectrometers
Thin film structures incorporating metallic superconducting layers and tunnel junctions can be configured as low-energy X-ray spectrometers. We present results obtained when low-energy X-rays are absorbed in niobium films coupled to aluminum layers that serve as quasiparticle traps in an Nb/Al/Al{sub 2}O{sub 3}/Al/Nb tunnel junction X-ray detector. The linearity of the pulse height as a function of energy is discussed along with the energy dependence of the observed resolution and its relation to the broadening mechanisms. A resolution of 14 eV at 1 keV has been measured with our detector cooled to 0.3 K
