997 research outputs found
Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses
Flow patterns generated by medusan swimmers such as
jellyfish are known to differ according the morphology of
the various animal species. Oblate medusae have been
previously observed to generate vortex ring structures
during the propulsive cycle. Owing to the inherent
physical coupling between locomotor and feeding
structures in these animals, the dynamics of vortex ring
formation must be robustly tuned to facilitate effective
functioning of both systems. To understand how this is
achieved, we employed dye visualization techniques on
scyphomedusae (Aurelia aurita) observed swimming in
their natural marine habitat. The flow created during each
propulsive cycle consists of a toroidal starting vortex
formed during the power swimming stroke, followed by a
stopping vortex of opposite rotational sense generated
during the recovery stroke. These two vortices merge in a
laterally oriented vortex superstructure that induces flow
both toward the subumbrellar feeding surfaces and
downstream. The lateral vortex motif discovered here
appears to be critical to the dual function of the medusa
bell as a flow source for feeding and propulsion.
Furthermore, vortices in the animal wake have a greater
volume and closer spacing than predicted by prevailing
models of medusan swimming. These effects are shown to
be advantageous for feeding and swimming performance,
and are an important consequence of vortex interactions
that have been previously neglected
Estimation of elastic and viscous properties of the left ventricle based on annulus plane harmonic behavior
Assessment of left ventricular (LV) function
with an emphasis on contractility has been a challenge
in cardiac mechanics during the recent decades. The LV
function is usually described by the LV pressurevolume
(P-V) diagram. The standard P-V diagrams are
easy to interpret but difficult to obtain and require
invasive instrumentation for measuring the
corresponding volume and pressure data. In the present
study, we introduce a technique that can estimate the
viscoelastic properties of the LV based on harmonic
behavior of the ventricular chamber and it can be
applied non-invasively as well. The estimation technique
is based on modeling the actual long axis displacement
of the mitral annulus plane toward the cardiac base as a
linear damped oscillator with time-varying coefficients.
The time-varying parameters of the model were
estimated by a standard Recursive Linear Least
Squares (RLLS) technique. LV stiffness at end-systole
and end diastole was in the range of 61.86-136.00
dyne/g.cm and 1.25-21.02 dyne/g.cm, respectively. The
only input used in this model was the long axis
displacement of the annulus plane, which can also be
obtained non-invasively using tissue Doppler or MR
imaging
Experimental Study of Heat Convection From Stationary and Oscillating Circular Cylinder in Cross Flow
An experimental study is made on the processes of heat transfer from the surface of a
forced oscillating cylinder in a crossflow. A range of oscillation amplitude (A/D
=0.1,0.2), forced oscillation frequency (0<St_c<1), and Reynolds number (Re=550,
1100, 3500) is covered in water (Pr=6). Besides the increase at the natural vortex
shedding frequency, large increases in the heat transfer are found at certain superharmonics.
By using Digital Particle Image Velocimetry/Thermometry (DPIV/T), the increase
in the heat transfer rate is found to correlate inversely with the distance at which
vortices roll-up behind the cylinder, i.e., the distance decreases when the heat transfer
increases. The cause of the increase is found to be the removal of the stagnant and low
heat convecting fluid at the base of the cylinder during the roll-up of the vortices
Isotropic inverse-problem approach for two-dimensional phase unwrapping
In this paper, we propose a new technique for two-dimensional phase
unwrapping. The unwrapped phase is found as the solution of an inverse problem
that consists in the minimization of an energy functional. The latter includes
a weighted data-fidelity term that favors sparsity in the error between the
true and wrapped phase differences, as well as a regularizer based on
higher-order total-variation. One desirable feature of our method is its
rotation invariance, which allows it to unwrap a much larger class of images
compared to the state of the art. We demonstrate the effectiveness of our
method through several experiments on simulated and real data obtained through
the tomographic phase microscope. The proposed method can enhance the
applicability and outreach of techniques that rely on quantitative phase
evaluation
- …