114 research outputs found

    Visualization of acetylcholine distribution in central nervous system tissue sections by tandem imaging mass spectrometry

    Get PDF
    Metabolite distribution imaging via imaging mass spectrometry (IMS) is an increasingly utilized tool in the field of neurochemistry. As most previous IMS studies analyzed the relative abundances of larger metabolite species, it is important to expand its application to smaller molecules, such as neurotransmitters. This study aimed to develop an IMS application to visualize neurotransmitter distribution in central nervous system tissue sections. Here, we raise two technical problems that must be resolved to achieve neurotransmitter imaging: (1) the lower concentrations of bioactive molecules, compared with those of membrane lipids, require higher sensitivity and/or signal-to-noise (S/N) ratios in signal detection, and (2) the molecular turnover of the neurotransmitters is rapid; thus, tissue preparation procedures should be performed carefully to minimize postmortem changes. We first evaluated intrinsic sensitivity and matrix interference using Matrix Assisted Laser Desorption/Ionization (MALDI) mass spectrometry (MS) to detect six neurotransmitters and chose acetylcholine (ACh) as a model for study. Next, we examined both single MS imaging and MS/MS imaging for ACh and found that via an ion transition from m/z 146 to m/z 87 in MS/MS imaging, ACh could be visualized with a high S/N ratio. Furthermore, we found that in situ freezing method of brain samples improved IMS data quality in terms of the number of effective pixels and the image contrast (i.e., the sensitivity and dynamic range). Therefore, by addressing the aforementioned problems, we demonstrated the tissue distribution of ACh, the most suitable molecular specimen for positive ion detection by IMS, to reveal its localization in central nervous system tissues

    Ultrasensitive Molecule Detection Based on Infrared Metamaterial Absorber with Vertical Nanogap

    Get PDF
    Surface-enhanced infrared absorption (SEIRA) spectroscopy is a powerful methodology for sensing and identifying small quantities of analyte molecules via coupling between molecular vibrations and an enhanced near-field induced in engineered structures. A metamaterial absorber (MA) is proposed as an efficient SEIRA platform; however, its efficiency is limited because it requires the appropriate insulator thickness and has a limited accessible area for sensing. SEIRA spectroscopy is proposed using an MA with a 10 nm thick vertical nanogap, and a record-high reflection difference SEIRA signal of 36% is experimentally achieved using a 1-octadecanethiol monolayer target molecule. Theoretical and experimental comparative studies are conducted using MAs with three different vertical nanogaps. The MAs with a vertical nanogap are processed using nanoimprint lithography and isotropic dry etching, which allow cost-effective large-area patterning and mass production. The proposed structure may provide promising routes for ultrasensitive sensing and detection applications

    Ultrasonic evaluation of superficial temporal artery-middle cerebral artery anastomosis.

    No full text
    corecore